“Seamless visual sharing with color vision deficiencies”

  • ©Wuyao Shen, Xiangyu Mao, Xinghong Hu, and Tien-Tsin Wong




    Seamless visual sharing with color vision deficiencies





    Approximately 250 million people suffer from color vision deficiency (CVD). They can hardly share the same visual content with normal-vision audiences. In this paper, we propose the first system that allows CVD and normal-vision audiences to share the same visual content simultaneously. The key that we can achieve this is because the ordinary stereoscopic display (non-autostereoscopic ones) offers users two visual experiences (with and without wearing stereoscopic glasses). By allocating one experience to CVD audiences and one to normal-vision audiences, we allow them to share. The core problem is to synthesize an image pair, that when they are presented binocularly, CVD audiences can distinguish the originally indistinguishable colors; and when it is in monocular presentation, normal-vision audiences cannot distinguish its difference from the original image. We solve the image-pair recoloring problem by optimizing an objective function that minimizes the color deviation for normal-vision audiences, and maximizes the color distinguishability and binocular fusibility for CVD audiences. Our method is extensively evaluated via multiple quantitative experiments and user studies. Convincing results are obtained in all our test cases.


    1. Baker, D. H., Meese, T. S., Mansouri, B., and Hess, R. F. 2007. Binocular summation of contrast remains intact in strabis-mic amblyopia. Investigative ophthalmology & visual science 48, 11, 5332–5338.Google Scholar
    2. Brettel, H., Viénot, F., and Mollon, J. D. 1997. Computerized simulation of color appearance for dichromats. JOSA A 14, 10, 2647–2655.Google ScholarCross Ref
    3. Chua, S. H., Zhang, H., Hammad, M., Zhao, S., Goyal, S., and Singh, K. 2015. Colorbless: Augmenting visual information for colorblind people with binocular luster effect. ACM Transactions on Computer-Human Interaction (TOCHI) 21, 6, 32. Google ScholarDigital Library
    4. Farnsworth, D. 1957. The farnsworth-munsell 100-hue test for the examination of color discrimination.Google Scholar
    5. Gooch, A. A., Olsen, S. C., Tumblin, J., and Gooch, B. 2005. Color2gray: salience-preserving color removal. ACM Trans. Graph. 24, 3, 634–639. Google ScholarDigital Library
    6. Graham, C., and Hsia, Y. 1959. Studies of color blindness: a unilaterally dichromatic subject. PNAS 45, 1, 96.Google ScholarCross Ref
    7. Grundland, M., and Dodgson, N. A. 2007. Decolorize: Fast, contrast enhancing, color to grayscale conversion. Pattern Recognition 40, 11, 2891–2896. Google ScholarDigital Library
    8. Hartenbaum, N. P., and Stack, C. M. 1997. Color vision deficiency and the x-chrom lens. Occupational health & safety (Waco, Tex.) 66, 9, 36.Google Scholar
    9. Hovis, J. K. 1997. Long wavelength pass filters designed for the management of color vision deficiencies. Optometry & Vision Science 74, 4, 222–230.Google ScholarCross Ref
    10. Howard, I. P. 2002. Seeing in depth, Vol. 1: Basic mechanisms. University of Toronto Press.Google Scholar
    11. Huang, J.-B., Tseng, Y.-C., Wu, S.-I., and Wang, S.-J. 2007. Information preserving color transformation for protanopia and deuteranopia. Signal Processing Letters, IEEE 14, 10, 711–714.Google ScholarCross Ref
    12. Huang, J.-B., Chen, C.-S., Jen, T.-C., and Wang, S.-J. 2009. Image recolorization for the colorblind. In ICASSP, 1161–1164. Google ScholarDigital Library
    13. Huang, C.-R., Chiu, K.-C., and Chen, C.-S. 2011. Temporal color consistency-based video reproduction for dichromats. Multimedia, IEEE Transactions on 13, 5, 950–960. Google ScholarDigital Library
    14. Hung, P., and Hiramatsu, N. 2013. A colour conversion method which allows colourblind and normal-vision people share documents with colour content. Tech. rep., tech. rep., Konica Minolta Tech. Report.Google Scholar
    15. Ichikawa, M., Tanaka, K., Kondo, S., Hiroshima, K., Ichikawa, K., Tanabe, S., and Fukami, K. 2004. Preliminary study on color modification for still images to realize barrier-free color vision. In Systems, Man and Cybernetics, 2004 IEEE International Conference on, vol. 1, 36–41.Google Scholar
    16. Jefferson, L., and Harvey, R. 2006. Accommodating color blind computer users. In SIGACCESS, 40–47. Google ScholarDigital Library
    17. Jefferson, L., and Harvey, R. 2007. An interface to support color blind computer users. In Proceedings of the SIGCHI conference on Human factors in computing systems, 1535–1538. Google ScholarDigital Library
    18. Judd, D. B. 1948. Color perceptions of deuteranopic and protanopic observers. J. Res. Natl. Bur. Stand 41, 247–271.Google ScholarCross Ref
    19. Judd, D. B. 1966. Fundamental studies of color vision from 1860 to 1960. PNAS 55, 6, 1313.Google ScholarCross Ref
    20. Kondo, S. 1990. A computer simulation of anomalous color vision. In Color Vision Deficiencies, Symp. Int. Res. G. on CVD, 145–159.Google Scholar
    21. Kuhn, G. R., Oliveira, M. M., and Fernandes, L. A. 2008. An efficient naturalness-preserving image-recoloring method for dichromats. Visualization and Computer Graphics, IEEE Transactions on 14, 6, 1747–1754. Google ScholarDigital Library
    22. Kuhn, G. R., Oliveira, M. M., and Fernandes, L. A. 2008. An improved contrast enhancing approach for color-to-grayscale mappings. The Visual Computer 24, 7-9, 505–514. Google ScholarDigital Library
    23. Laccarino, G., Malandrino, D., Del Percio, M., and S-carano, V. 2006. Efficient edge-services for colorblind users. In WWW, 919–920. Google ScholarDigital Library
    24. Lau, C., Heidrich, W., and Mantiuk, R. 2011. Cluster-based color space optimizations. In Computer Vision (ICCV), 2011 IEEE International Conference on, IEEE, 1172–1179. Google ScholarDigital Library
    25. Lei, L., and Schor, C. M. 1994. The spatial properties of binocular suppression zone. Vision research 34, 7, 937–947.Google Scholar
    26. Lu, C., Xu, L., and Jia, J. 2012. Contrast preserving decol-orization. In ICCP, 1–7.Google Scholar
    27. Machado, G. M., and Oliveira, M. M. 2010. Real-time temporal-coherent color contrast enhancement for dichromats. In Comput. Graph. Forum, vol. 29, 933–942. Google ScholarDigital Library
    28. Machado, G. M., Oliveira, M. M., and Fernandes, L. A. 2009. A physiologically-based model for simulation of color vision deficiency. IEEE Trans. Vis. Comput. Graph. 15, 6, 1291–1298. Google ScholarDigital Library
    29. MacMillan, E. S., Gray, L. S., and Heron, G. 2007. Visual adaptation to interocular brightness differences induced by neutral-density filters. Investigative ophthalmology & visual science 48, 2, 935–942.Google Scholar
    30. Meyer, G. W., and Greenberg, D. P. 1988. Color-defective vision and computer graphics displays. IEEE CGA 8, 5, 28–40. Google ScholarDigital Library
    31. Neumann, L., Čadík, M., and Nemcsics, A. 2007. An efficient perception-based adaptive color to gray transformation. In Proceedings of the Third Eurographics conference on Computational Aesthetics in Graphics, Visualization and Imaging, 73–80. Google ScholarDigital Library
    32. Rasche, K., Geist, R., and Westall, J. 2005. Detail preserving reproduction of color images for monochromats and dichromats. IEEE CGA 25, 3, 22–30. Google ScholarDigital Library
    33. Rasche, K., Geist, R., and Westall, J. 2005. Re-coloring images for gamuts of lower dimension. In Comput. Graph. Forum, vol. 24, 423–432.Google ScholarCross Ref
    34. Sajadi, B., Majumder, A., Oliveira, M. M., Schneider, R. G., and Raskar, R. 2013. Using patterns to encode color information for dichromats. IEEE Trans. Vis. Comput. Graph. 19, 1, 118–129. Google ScholarDigital Library
    35. Scott, S., Barbara, S., and Garzia, R. 2000. Foundations of binocular vision: A clinical perspective. McGraw-Hill Medical.Google Scholar
    36. Sharpe, L. T., Stockman, A., Jägle, H., and Nathans, J. 1999. Opsin genes, cone photopigments, color vision, and color blindness. Color vision: From genes to perception, 3–51.Google Scholar
    37. Sheedy, J., and Stocker, E. 1984. Surrogate color vision by luster discrimination. American journal of optometry and physiological optics 61, 8, 499–505.Google Scholar
    38. Wakita, K., and Shimamura, K. 2005. Smartcolor: disambiguation framework for the colorblind. In Proceedings of the 7th international ACM SIGACCESS conference on Computers and accessibility, 158–165. Google ScholarDigital Library
    39. Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P. 2004. Image quality assessment: from error visibility to structural similarity. IEEE Transactions on Image Processing 13, 4, 600–612. Google ScholarDigital Library
    40. Wong, B. 2011. Points of view: Color blindness. nature methods 8, 6, 441–441.Google Scholar
    41. Yang, X., Zhang, L., Wong, T.-T., and Heng, P.-A. 2012. Binocular tone mapping. ACM Trans. Graph. 31, 4, 93:1–93:10. Google ScholarDigital Library

ACM Digital Library Publication: