“Robust and accurate skeletal rigging from mesh sequences” by Le and Deng
Conference:
Type(s):
Title:
- Robust and accurate skeletal rigging from mesh sequences
Session/Category Title: Animating Characters
Presenter(s)/Author(s):
Moderator(s):
Abstract:
We introduce an example-based rigging approach to automatically generate linear blend skinning models with skeletal structure. Based on a set of example poses, our approach can output its skeleton, joint positions, linear blend skinning weights, and corresponding bone transformations. The output can be directly used to set up skeleton-based animation in various 3D modeling and animation software as well as game engines. Specifically, we formulate the solving of a linear blend skinning model with a skeleton as an optimization with joint constraints and weight smoothness regularization, and solve it using an iterative rigging algorithm that (i) alternatively updates skinning weights, joint locations, and bone transformations, and (ii) automatically prunes redundant bones that can be generated by an over-estimated bone initialization. Due to the automatic redundant bone pruning, our approach is more robust than existing example-based rigging approaches. Furthermore, in terms of rigging accuracy, even with a single set of parameters, our approach can soundly outperform state of the art methods on various types of experimental datasets including humans, quadrupled animals, and highly deformable models.
References:
1. Ali-Hamadi, D., Liu, T., Gilles, B., Kavan, L., Faure, F., Palombi, O., and Cani, M.-P. 2013. Anatomy transfer. ACM Trans. Graph. 32, 6 (Nov.), 188:1–188:8. Google ScholarDigital Library
2. Anguelov, D., Koller, D., Pang, H.-C., Srinivasan, P., and Thrun, S. 2004. Recovering articulated object models from 3D range data. In UAI’04: Proc. of Conf. on Uncertainty in Artificial Intelligence, 18–26. Google ScholarDigital Library
3. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., and Davis, J. 2005. Scape: Shape completion and animation of people. ACM Trans. Graph. 24, 3 (July), 408–416. Google ScholarDigital Library
4. Au, O. K.-C., Tai, C.-L., Chu, H.-K., Cohen-Or, D., and Lee, T.-Y. 2008. Skeleton extraction by mesh contraction. ACM Trans. Graph. 27, 3 (Aug.), 44:1–44:10. Google ScholarDigital Library
5. Baran, I., and Popović, J. 2007. Automatic rigging and animation of 3d characters. ACM Trans. Graph. 26, 3 (July). Google ScholarDigital Library
6. Briceño, H. M., Sander, P. V., McMillan, L., Gortler, S., and Hoppe, H. 2003. Geometry videos: A new representation for 3D animations. In SCA’03: Proc. of Symp. on Computer Animation, 136–146. Google ScholarDigital Library
7. de Aguiar, E., Theobalt, C., Thrun, S., and Seidel, H.-P. 2008. Automatic conversion of mesh animations into skeleton-based animations. Comput. Graph. Forum 27, 2 (4), 389–397.Google Scholar
8. de Aguiar, E., Stoll, C., Theobalt, C., Ahmed, N., Seidel, H.-P., and Thrun, S. 2008. Performance capture from sparse multi-view video. ACM Trans. Graph. 27, 3 (Aug.), 98:1–98:10. Google ScholarDigital Library
9. Hahn, F., Martin, S., Thomaszewski, B., Sumner, R., Coros, S., and Gross, M. 2012. Rig-space physics. ACM Trans. Graph. 31, 4 (July), 72:1–72:8. Google ScholarDigital Library
10. Hasler, N., Thormählen, T., Rosenhahn, B., and Seidel, H.-P. 2010. Learning skeletons for shape and pose. In I3D’10: Proc. of Symp. on Interactive 3D Graphics and Games, 23–30. Google ScholarDigital Library
11. Huang, H., Wu, S., Cohen-Or, D., Gong, M., Zhang, H., Li, G., and Chen, B. 2013. L1-medial skeleton of point cloud. ACM Trans. Graph. 32, 4 (July), 65:1–65:8. Google ScholarDigital Library
12. Jacobson, A., and Sorkine, O. 2011. Stretchable and twistable bones for skeletal shape deformation. ACM Trans. Graph. 30, 6 (Dec.), 165:1–165:8. Google ScholarDigital Library
13. Jacobson, A., Baran, I., Popović, J., and Sorkine, O. 2011. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4 (July), 78:1–78:8. Google ScholarDigital Library
14. James, D. L., and Twigg, C. D. 2005. Skinning mesh animations. ACM Trans. Graph. 24, 3 (July), 399–407. Google ScholarDigital Library
15. Kabsch, W. 1978. A discussion of the solution for the best rotation to relate two sets of vectors. Acta Crystallographica Section A 34, 827–828.Google ScholarCross Ref
16. Kavan, L., and Sorkine, O. 2012. Elasticity-inspired deformers for character articulation. ACM Trans. Graph. 31, 6 (Nov.), 196:1–196:8. Google ScholarDigital Library
17. Kavan, L., Collins, S., Žára, J., and O’Sullivan, C. 2008. Geometric skinning with approximate dual quaternion blending. ACM Trans. Graph. 27, 4 (Nov.), 105:1–105:23. Google ScholarDigital Library
18. Kavan, L., Sloan, P.-P., and O’Sullivan, C. 2010. Fast and efficient skinning of animated meshes. Comput. Graph. Forum 29, 2, 327–336.Google ScholarCross Ref
19. Kim, B.-U., Feng, W.-W., and Yu, Y. 2010. Real-time data driven deformation with affine bones. Vis. Comput. 26, 6–8 (June), 487–495. Google ScholarDigital Library
20. Kirk, A. G., O’Brien, J. F., and Forsyth, D. A. 2005. Skeletal parameter estimation from optical motion capture data. In IEEE CVPR, 782–788. Google ScholarDigital Library
21. Kruskal, J. B. 1956. On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem. Proceedings of the American Mathematical Society 7, 1 (Feb.), 48–50.Google ScholarCross Ref
22. Landreneau, E., and Schaefer, S. 2010. Poisson-based weight reduction of animated meshes. Comput. Graph. Forum 29, 6, 1945–1954.Google ScholarCross Ref
23. Le, B. H., and Deng, Z. 2012. Smooth skinning decomposition with rigid bones. ACM Trans. Graph. 31, 6 (Nov.), 199:1–199:10. Google ScholarDigital Library
24. Le, B. H., and Deng, Z. 2013. Two-layer sparse compression of dense-weight blend skinning. ACM Trans. Graph. 32, 4 (July), 124:1–124:10. Google ScholarDigital Library
25. Lee, S.-H., Sifakis, E., and Terzopoulos, D. 2009. Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans. Graph. 28, 4 (Sept.), 99:1–99:17. Google ScholarDigital Library
26. Linde, Y., Buzo, A., and Gray, R. 1980. An algorithm for vector quantizer design. IEEE Trans. on Communication 28, 1, 84–95.Google ScholarCross Ref
27. Liu, L., Yin, K., Wang, B., and Guo, B. 2013. Simulation and control of skeleton-driven soft body characters. ACM Trans. Graph. 32, 6 (Nov.), 215:1–215:8. Google ScholarDigital Library
28. Livny, Y., Yan, F., Olson, M., Chen, B., Zhang, H., and El-Sana, J. 2010. Automatic reconstruction of tree skeletal structures from point clouds. ACM Trans. Graph. 29, 6 (Dec.), 151:1–151:8. Google ScholarDigital Library
29. McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., and Sifakis, E. 2011. Efficient elasticity for character skinning with contact and collisions. ACM Trans. Graph. 30, 4 (July), 37:1–37:12. Google ScholarDigital Library
30. Merry, B., Marais, P., and Gain, J. 2006. Animation space: A truly linear framework for character animation. ACM Trans. Graph. 25, 4 (Oct.), 1400–1423. Google ScholarDigital Library
31. Mohr, A., and Gleicher, M. 2003. Building efficient, accurate character skins from examples. ACM Trans. Graph. 22, 3 (July), 562–568. Google ScholarDigital Library
32. Park, S. I., and Hodgins, J. K. 2006. Capturing and animating skin deformation in human motion. ACM Trans. Graph. 25, 3 (July), 881–889. Google ScholarDigital Library
33. Schaefer, S., and Yuksel, C. 2007. Example-based skeleton extraction. In SGP’07: Proc. of Symp. on Geometry Processing, 153–162. Google ScholarDigital Library
34. Stoll, C., Gall, J., de Aguiar, E., Thrun, S., and Theobalt, C. 2010. Video-based reconstruction of animatable human characters. ACM Trans. Graph. 29, 6 (Dec.), 139:1–139:10. Google ScholarDigital Library
35. Sumner, R. W., and Popović, J. 2004. Deformation transfer for triangle meshes. ACM Trans. Graph. 23, 3 (Aug.), 399–405. Google ScholarDigital Library
36. Tagliasacchi, A., Zhang, H., and Cohen-Or, D. 2009. Curve skeleton extraction from incomplete point cloud. ACM Trans. Graph. 28, 3 (July), 71:1–71:9. Google ScholarDigital Library
37. Utah, 2013. The utah 3D animation repository.Google Scholar
38. Vaillant, R., Barthe, L., Guennebaud, G., Cani, M.-P., Rohmer, D., Wyvill, B., Gourmel, O., and Paulin, M. 2013. Implicit skinning: Real-time skin deformation with contact modeling. ACM Trans. Graph. 32, 4 (July), 125:1–125:12. Google ScholarDigital Library
39. Vlasic, D., Baran, I., Matusik, W., and Popović, J. 2008. Articulated mesh animation from multi-view silhouettes. ACM Trans. Graph. 27, 3 (Aug.), 97:1–97:9. Google ScholarDigital Library
40. Vlasic, D., Peers, P., Baran, I., Debevec, P., Popović, J., Rusinkiewicz, S., and Matusik, W. 2009. Dynamic shape capture using multi-view photometric stereo. ACM Trans. Graph. 28, 5 (Dec.), 174:1–174:11. Google ScholarDigital Library
41. Wang, X. C., and Phillips, C. 2002. Multi-weight enveloping: least-squares approximation techniques for skin animation. In SCA’02: Proc. of Symp. on Computer animation, 129–138. Google ScholarDigital Library