“RoboCut: hot-wire cutting with robot-controlled flexible rods” by Duenser, Poranne, Thomaszewski and Coros

  • ©Simon Duenser, Roi Poranne, Bernhard Thomaszewski, and Stelian Coros




    RoboCut: hot-wire cutting with robot-controlled flexible rods


Session Title: Creative Fabrication


    Hot-wire cutting is a subtractive fabrication technique used to carve foam and similar materials. Conventional machines rely on straight wires and are thus limited to creating piecewise ruled surfaces. In this work, we propose a method that exploits a dual-arm robot setup to actively control the shape of a flexible, heated rod as it cuts through the material. While this setting offers great freedom of shape, using it effectively requires concurrent reasoning about three tightly coupled sub-problems: 1) modeling the way in which the shape of the rod and the surface it sweeps are governed by the robot’s motions; 2) approximating a target shape through a sequence of surfaces swept by the equilibrium shape of an elastic rod; and 3) generating collision-free motion trajectories that lead the robot to create desired sweeps with the deformable tool. We present a computational framework for robotic hot wire cutting that addresses all three sub-problems in a unified manner. We evaluate our approach on a set of simulated results and physical artefacts generated with our robotic fabrication system.


    1. E. L. Allgower and Kurt Georg. 2003. Introduction to Numerical Continuation Methods. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA.Google Scholar
    2. Gavin Barill, Neil G. Dickson, Ryan Schmidt, David I. W. Levin, and Alec Jacobson. 2018. Fast Winding Numbers for Soups and Clouds. ACM Trans. Graph. 37, 4, Article Article 43 (July 2018), 12 pages. Google ScholarDigital Library
    3. Miklós Bergou, Basile Audoly, Etienne Vouga, Max Wardetzky, and Eitan Grinspun. 2010. Discrete Viscous Threads. In ACM SIGGRAPH 2010 Papers (SIGGRAPH ’10). ACM, New York, NY, USA, Article 116, 10 pages. Google ScholarDigital Library
    4. P. J. Besl and N. D. McKay. 1992. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence 14, 2 (Feb 1992), 239–256. Google ScholarDigital Library
    5. Sofien Bouaziz, Andrea Tagliasacchi, and Mark Pauly. 2013. Sparse Iterative Closest Point. Computer Graphics Forum 32, 5 (2013), 113–123. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12178 Google ScholarDigital Library
    6. Desai Chen, Pitchaya Sitthi-amorn, Justin T. Lan, and Wojciech Matusik. 2013. Computing and Fabricating Multiplanar Models. Computer Graphics Forum 32, 2pt3 (2013), 305–315. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12050 Google ScholarCross Ref
    7. Y. Chen and G. Medioni. 1991. Object modeling by registration of multiple range images. In Proceedings. 1991 IEEE International Conference on Robotics and Automation. 2724–2729 vol.3. Google ScholarCross Ref
    8. David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. 2004. Variational Shape Approximation. ACM Trans. Graph. 23, 3 (Aug. 2004), 905–914. Google ScholarDigital Library
    9. Chengkai Dai, Charlie C. L. Wang, Chenming Wu, Sylvain Lefebvre, Guoxin Fang, and Yong-Jin Liu. 2018. Support-free Volume Printing by Multi-axis Motion. ACM Trans. Graph. 37, 4, Article 134 (July 2018), 14 pages. Google ScholarDigital Library
    10. Simon Flöry, Yukie Nagai, Florin Isvoranu, Helmut Pottmann, and Johannes Wallner. 2013. Ruled Free Forms. In Advances in Architectural Geometry 2012, Lars Hesselgren, Shrikant Sharma, Johannes Wallner, Niccolo Baldassini, Philippe Bompas, and Jacques Raynaud (Eds.). Springer Vienna, Vienna, 57–66.Google Scholar
    11. Simon Flöry and Helmut Pottmann. 2010. Ruled Surfaces for Rationalization and Design in Architecture. In LIFE in:formation. On Responsive Information and Variations in Architecture, Aaron Sprecher, Shai Yeshayahu, and Pablo Lorenzo-Eiroa (Eds.). Association for Computer Aided Design in Architecture (ACADIA), 103–109. Proc. ACADIA 2010.Google ScholarCross Ref
    12. Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.Google Scholar
    13. Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing library. http://libigl.github.io/libigl/.Google Scholar
    14. B. Jian and B. C. Vemuri. 2011. Robust Point Set Registration Using Gaussian Mixture Models. IEEE Transactions on Pattern Analysis and Machine Intelligence 33, 8 (Aug 2011), 1633–1645. Google ScholarDigital Library
    15. Hao Li, Robert W. Sumner, and Mark Pauly. 2008. Global Correspondence Optimization for Non-Rigid Registration of Depth Scans. Computer Graphics Forum 27, 5 (2008), 1421–1430. arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1467-8659.2008.01282.x Google ScholarCross Ref
    16. Vittorio Megaro, Jonas Zehnder, Moritz Bächer, Stelian Coros, Markus Gross, and Bernhard Thomaszewski. 2017. A Computational Design Tool for Compliant Mechanisms. ACM Trans. Graph. 36, 4, Article Article 82 (July 2017), 12 pages. Google ScholarDigital Library
    17. Alessandro Muntoni, Marco Livesu, Riccardo Scateni, Alla Sheffer, and Daniele Panozzo. 2018. Axis-Aligned Height-Field Block Decomposition of 3D Shapes. ACM Trans. Graph. 37, 5, Article 169 (Oct. 2018), 15 pages. Google ScholarDigital Library
    18. A. Myronenko and X. Song. 2010. Point Set Registration: Coherent Point Drift. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 12 (Dec 2010), 2262–2275. Google ScholarDigital Library
    19. Roi Poranne, Marco Tarini, Sandro Huber, Daniele Panozzo, and Olga Sorkine-Hornung. 2017. Autocuts: Simultaneous Distortion and Cut Optimization for UV Mapping. ACM Trans. Graph. 36, 6, Article 215 (Nov. 2017), 11 pages. Google ScholarDigital Library
    20. Helmut Pottmann and Johannes Wallner. 2001. Computational Line Geometry. Springer-Verlag, Berlin, Heidelberg.Google Scholar
    21. Michael Rabinovich, Tim Hoffmann, and Olga Sorkine-Hornung. 2018. The Shape Space of Discrete Orthogonal Geodesic Nets. ACM Transactions on Graphics (proceedings of ACM SIGGRAPH ASIA) 37, 6 (2018).Google Scholar
    22. Romana Rust, Fabio Gramazio, and Matthias Kohler. 2016a. Force Adaptive Hot-Wire Cutting: Integrated Design, Simulation, and Fabrication of Double-Curved Surface Geometries. In Advances in Architectural Geometry 2016, Sigrid Adriaenssens, Fabio Gramazio, Matthias Kohler, Achim Menges, and Mark Pauly (Eds.). Hochschulverlag an der ETH Zürich, 288–305. Google ScholarCross Ref
    23. Romana Rust, David Jenny, Fabio Gramazio, and Matthias Kohler. 2016b. Spatial Wire Cutting – Cooperative robotic cutting of non-ruled surface geometries for bespoke building components. In Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2016), S. Chien, S. Choo, M. A. Schnabel, W. Nakapan, M. J. Kim, and S. Roudavski (Eds.), Vol. 21. The Association for Computer-Aided Architectural Design Research in Asia (CAADRIA), Hong Kong, 529–538. http://papers.cumincad.org/data/works/att/caadria2016_529.pdfGoogle Scholar
    24. Asbjørn Søndergaard, Jelle Feringa, Toke Nørbjerg, Kasper Steenstrup, David Brander, Jens Graversen, Steen Markvorsen, Andreas Bærentzen, Kiril Petkov, Jesper Hattel, Kenn Clausen, Kasper Jensen, Lars Knudsen, and Jacob Kortbek. 2016. Robotic Hot-Blade Cutting. Springer International Publishing, Cham, 150–164. Google ScholarCross Ref
    25. Oded Stein, Eitan Grinspun, and Keenan Crane. 2018. Developability of Triangle Meshes. ACM Trans. Graph. 37, 4, Article 77 (July 2018), 14 pages. Google ScholarDigital Library
    26. Charlie C.L. Wang and Gershon Elber. 2014. Multi-dimensional dynamic programming in ruled surface fitting. Computer-Aided Design 51 (2014), 39 — 49. Google ScholarCross Ref
    27. C. Wu, C. Dai, G. Fang, Y. Liu, and C. C. L. Wang. 2017. RoboFDM: A robotic system for support-free fabrication using FDM. In 2017 IEEE International Conference on Robotics and Automation (ICRA). 1175–1180. Google ScholarCross Ref
    28. Rundong Wu, Huaishu Peng, François Guimbretière, and Steve Marschner. 2016. Printing Arbitrary Meshes with a 5DOF Wireframe Printer. ACM Trans. Graph. 35, 4, Article 101 (July 2016), 9 pages. Google ScholarDigital Library
    29. Haishen Zhao, Hao Zhang, Shiqin Xin, Yuanmin Duan, Changhe Tu, Wenping Wang, Daniel Cohen-Or, and Baoquan Chen. 2018. DSCarver: Decompose-and-Spiral-Carve for Subtractive Manufacturing. ACM Transactions on Graphics 37, 4 (2018), Article 137.Google ScholarDigital Library

ACM Digital Library Publication: