“Rendering glints on high-resolution normal-mapped specular surfaces” by Yan, Hasan, Jakob, Lawrence, Marschner, et al. …

  • ©Ling-Qi Yan, Milos Hasan, Wenzel Jakob, Jason Lawrence, Steve Marschner, and Ravi Ramamoorthi




    Rendering glints on high-resolution normal-mapped specular surfaces

Session/Category Title: Reflectance: Modeling, Capturing, Renderings




    Complex specular surfaces under sharp point lighting show a fascinating glinty appearance, but rendering it is an unsolved problem. Using Monte Carlo pixel sampling for this purpose is impractical: the energy is concentrated in tiny highlights that take up a minuscule fraction of the pixel. We instead compute an accurate solution using a completely different deterministic approach. Our method considers the true distribution of normals on a surface patch seen through a single pixel, which can be highly complex. We show how to evaluate this distribution efficiently, assuming a Gaussian pixel footprint and Gaussian intrinsic roughness. We also take advantage of hierarchical pruning of position-normal space to rapidly find texels that might contribute to a given normal distribution evaluation. Our results show complex, temporally varying glints from materials such as bumpy plastics, brushed and scratched metals, metallic paint and ocean waves.


    1. Burley, B. 2012. Physically-based shading at Disney. Technical Report.Google Scholar
    2. Cook, R. L., Carpenter, L., and Catmull, E. 1987. The REYES image rendering architecture. SIGGRAPH ’87, 95–102. Google ScholarDigital Library
    3. Dupuy, J., Heitz, E., Iehl, J.-C., Poulin, P., Neyret, F., and Ostromoukhov, V. 2013. Linear Efficient Antialiased Displacement and Reflectance Mapping. ACM Trans. Graph. 32, 6. Google ScholarDigital Library
    4. Genz, A. 2004. Numerical computation of rectangular bivariate and trivariate normal and t probabilities. Statistics and Computing 14, 3, 251–260. Google ScholarDigital Library
    5. Han, C., Sun, B., Ramamoorthi, R., and Grinspun, E. 2007. Frequency domain normal map filtering. ACM Trans. Graph. 26, 3, 28:1–28:12. Google ScholarDigital Library
    6. Igehy, H. 1999. Tracing ray differentials. SIGGRAPH ’99, 179–186. Google ScholarDigital Library
    7. Jakob, W., and Marschner, S. 2012. Manifold exploration: A markov chain monte carlo technique for rendering scenes with difficult specular transport. ACM Trans. Graph. 31, 4, 58:1–58:13. Google ScholarDigital Library
    8. Jakob, W., Hašan, M., Yan, L.-Q., Lawrence, J., Ramamoorthi, R., and Marschner, S. 2014. Discrete stochastic microfacet models. ACM Trans. Graph. 33, 4. Google ScholarDigital Library
    9. Jakob, W., 2010. Mitsuba renderer. http://www.mitsuba-renderer.org.Google Scholar
    10. Mitchell, D., and Hanrahan, P. 1992. Illumination from curved reflectors. SIGGRAPH Comput. Graph. 26, 2, 283–291. Google ScholarDigital Library
    11. Moon, J. T., Walter, B., and Marschner, S. R. 2007. Rendering discrete random media using precomputed scattering solutions. EGSR 07, 231–242. Google ScholarDigital Library
    12. Olano, M., and Baker, D. 2010. Lean mapping. ACM, I3D ’10, 181–188. Google ScholarDigital Library
    13. PolyCub, 2004. Polycub: Cubature over polygonal domains. http://cran.r-project.org/web/packages/polyCub/. Accessed: 2014-01-14.Google Scholar
    14. Rump, M., Müller, G., Sarlette, R., Koch, D., and Klein, R. 2008. Photo-realistic rendering of metallic car paint from image-based measurements. Computer Graphics Forum 27, 2, 527–536.Google ScholarCross Ref
    15. Tessendorf, J. 1999. Simulating ocean water. Technical Report.Google Scholar
    16. Toksvig, M. 2005. Mipmapping normal maps. Journal of Graphics Tools 10, 3, 65–71.Google ScholarCross Ref
    17. Veach, E. 1997. Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis, Stanford University. Google ScholarDigital Library
    18. Walter, B., Marschner, S. R., Li, H., and Torrance, K. E. 2007. Microfacet models for refraction through rough surfaces. EGSR 07, 195–206. Google ScholarDigital Library
    19. Walter, B., Zhao, S., Holzschuch, N., and Bala, K. 2009. Single scattering in refractive media with triangle mesh boundaries. ACM Trans. Graph. 28, 3, 92:1–92:8. Google ScholarDigital Library
    20. Xu, K., Cao, Y.-P., Ma, L.-Q., Dong, Z., Wang, R., and Hu, S.-M. 2014. A practical algorithm for rendering interreflections with all-frequency brdfs. ACM Trans. Graph. 33, 1, 10:1–10:16. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: