“Regression-based Monte Carlo integration” by Salaün, Gruson, Hua, Hachisuka and Singh

  • ©Corentin Salaün, Adrien Gruson, Binh-Son Hua, Toshiya Hachisuka, and Gurprit Singh




    Regression-based Monte Carlo integration



    Monte Carlo integration is typically interpreted as an estimator of the expected value using stochastic samples. There exists an alternative interpretation in calculus where Monte Carlo integration can be seen as estimating a constant function—from the stochastic evaluations of the integrand—that integrates to the original integral. The integral mean value theorem states that this constant function should be the mean (or expectation) of the integrand. Since both interpretations result in the same estimator, little attention has been devoted to the calculus-oriented interpretation. We show that the calculus-oriented interpretation actually implies the possibility of using a more complex function than a constant one to construct a more efficient estimator for Monte Carlo integration. We build a new estimator based on this interpretation and relate our estimator to control variates with least-squares regression on the stochastic samples of the integrand. Unlike prior work, our resulting estimator is provably better than or equal to the conventional Monte Carlo estimator. To demonstrate the strength of our approach, we introduce a practical estimator that can act as a simple drop-in replacement for conventional Monte Carlo integration. We experimentally validate our framework on various light transport integrals. The code is available at https://github.com/iribis/regressionmc.


    1. Laurent Belcour, Guofu Xie, Christophe Hery, Mark Meyer, Wojciech Jarosz, and Derek Nowrouzezahrai. 2018. Integrating clipped spherical harmonics expansions. ACM Transactions on Graphics (TOG) 37, 2 (2018), 1–12.Google ScholarDigital Library
    2. Benedikt Bitterli, Fabrice Rousselle, Bochang Moon, José A. Iglesias-Guitián, David Adler, Kenny Mitchell, Wojciech Jarosz, and Jan Novák. 2016. Nonlinearly Weighted First-Order Regression for Denoising Monte Carlo Renderings. 35, 4 (June 2016), 107–117. Google ScholarCross Ref
    3. Petrik Clarberg and Tomas Akenine-Möller. 2008. Exploiting Visibility Correlation in Direct Illumination. 27, 4 (2008), 1125–1136. Google ScholarCross Ref
    4. Miguel Crespo, Adrian Jarabo, and Adolfo Muñoz. 2021. Primary-Space Adaptive Control Variates Using Piecewise-Polynomial Approximations. ACM Trans. Graph. 40, 3, Article 25 (jul 2021), 15 pages. Google ScholarDigital Library
    5. Philip J Davis. 2013. Methods of numerical integration. Academic, New York; London.Google Scholar
    6. Shaohua Fan, Stephen Chenney, Bo Hu, Kam-Wah Tsui, and Yu-Chi Lai. 2006. Optimizing Control Variate Estimators for Rendering. (2006). Google ScholarCross Ref
    7. Peter W. Glynn and Roberto Szechtman. 2002. Some New Perspectives on the Method of Control Variates. In Monte Carlo and Quasi-Monte Carlo Methods 2000, Kai-Tai Fang, Harald Niederreiter, and Fred J. Hickernell (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 27–49.Google Scholar
    8. Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.Google Scholar
    9. Jerry Guo, Pablo Bauszat, Jacco Bikker, and Elmar Eisemann. 2018. Primary sample space path guiding. In Eurographics Symposium on Rendering, Vol. 2018. The Eurographics Association, 73–82.Google Scholar
    10. Stefan Heinrich. 2001. Multilevel Monte Carlo Methods. In Proceedings of the Third International Conference on Large-Scale Scientific Computing-RevisedPapers (LSSC ’01). Springer-Verlag, Berlin, Heidelberg, 58–67.Google ScholarDigital Library
    11. Fred J. Hickernell, Christiane Lemieux, and Art B. Owen. 2005. Control Variates for Quasi-Monte Carlo. Statist. Sci. 20, 1 (2005), 1 — 31. Google ScholarCross Ref
    12. Binh-Son Hua, Adrien Gruson, Victor Petitjean, Matthias Zwicker, Derek Nowrouzezahrai, Elmar Eisemann, and Toshiya Hachisuka. 2019. A Survey on Gradient-Domain Rendering. In Computer Graphics Forum, Vol. 38. Wiley Online Library, 455–472.Google Scholar
    13. Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka. 2002. A Simple and Robust Mutation Strategy for the Metropolis Light Transport Algorithm. 21, 3 (Sept. 2002), 531–540. Google ScholarCross Ref
    14. Alexander Keller. 2001. Hierarchical Monte Carlo Image Synthesis. Math. Comput. Simul. 55, 1–3 (Feb. 2001), 79–92. Google ScholarDigital Library
    15. Ivo Kondapaneni, Petr Vévoda, Pascal Grittmann, Tomas Skrivan, Philipp Slusallek, and Jaroslav Krivanek. 2019. Optimal Multiple Importance Sampling. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2019) 38, 4 (July 2019), 37:1–37:14. Google ScholarDigital Library
    16. Peter Kutz, Ralf Habel, Yining Karl Li, and Jan Novák. 2017. Spectral and decomposition tracking for rendering heterogeneous volumes. ACM Transactions on Graphics (TOG) 36, 4 (2017), 1–16.Google ScholarDigital Library
    17. Eric P. Lafortune and Yves D. Willems. 1994. The Ambient Term as a Variance Reducing Technique for Monte Carlo Ray Tracing. 163–171.Google Scholar
    18. W. W. Loh. 1995. On the Method of Control Variates. Ph.D. Thesis. Stanford University.Google Scholar
    19. Bochang Moon, Nathan Carr, and Sung-Eui Yoon. 2014. Adaptive Rendering Based on Weighted Local Regression. 33, 5 (Sept. 2014), 170:1–170:14. Google ScholarCross Ref
    20. Bochang Moon, Jose A. Iglesias-Guitian, Sung-Eui Yoon, and Kenny Mitchell. 2015. Adaptive Rendering with Linear Predictions. 34, 4 (July 2015), 121:1–121:11. Google ScholarCross Ref
    21. Thomas Müller, Markus Gross, and Jan Novák. 2017. Practical Path Guiding for Efficient Light-Transport Simulation. 36, 4 (June 2017), 91–100. Google ScholarCross Ref
    22. Thomas Müller, Fabrice Rousselle, Alexander Keller, and Jan Novák. 2020. Neural Control Variates. ACM Trans. Graph. 39, 6, Article 243 (Nov. 2020), 19 pages. Google ScholarDigital Library
    23. Yuji Nakatsukasa. 2018. Approximate and integrate: Variance reduction in Monte Carlo integration via function approximation. arXiv:math.NA/1806.05492Google Scholar
    24. Harald Niederreiter. 1992. Random Number Generation and Quasi-Monte Carlo Methods. SIAM.Google Scholar
    25. Art Owen and Yi Zhou. 2000. Safe and effective importance sampling. J. Amer. Statist. Assoc. 95, 449 (2000), 135–143.Google ScholarCross Ref
    26. Art B. Owen. 2013. Monte Carlo Theory, Methods and Examples. To be published.Google Scholar
    27. Anthony Pajot, Loic Barthe, and Mathias Paulin. 2014. Globally Adaptive Control Variate for Robust Numerical Integration. SIAM Journal on Scientific Computing 36, 4 (2014), A1708–A1730. Google ScholarDigital Library
    28. Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based Rendering: From Theory to Implementation (3 ed.). San Francisco, CA, USA.Google Scholar
    29. Fabrice Rousselle, Wojciech Jarosz, and Jan Novák. 2016. Image-Space Control Variates for Rendering. 35, 6 (Nov. 2016), 169:1–169:12. Google ScholarCross Ref
    30. Reuven Y. Rubinstein and Ruth Marcus. 1985. Efficiency of Multivariate Control Variates in Monte Carlo Simulation. (1985). Google ScholarDigital Library
    31. Kartic Subr. 2021. Q-NET: A Network for Low-dimensional Integrals of Neural Proxies. In Computer Graphics Forum, Vol. 40. Wiley Online Library, 61–71.Google Scholar
    32. Lloyd N. Trefethen. 2012. Approximation Theory and Approximation Practice (Other Titles in Applied Mathematics). Society for Industrial and Applied Mathematics, USA.Google Scholar
    33. Eric Veach. 1997. Robust Monte Carlo Methods for Light Transport Simulation. Ph.D. Thesis. Stanford University, United States – California.Google ScholarDigital Library
    34. Eric Veach and Leonidas J. Guibas. 1995. Optimally Combining Sampling Techniques for Monte Carlo Rendering, Vol. 29. 419–428. Google ScholarCross Ref
    35. Petr Vévoda, Ivo Kondapaneni, and Jaroslav Křivánek. 2018. Bayesian online regression for adaptive direct illumination sampling. ACM Transactions on Graphics (TOG) 37, 4 (2018), 1–12.Google ScholarDigital Library
    36. Jiří Vorba, Ondřej Karlík, Martin Šik, Tobias Ritschel, and Jaroslav Křivánek. 2014. On-Line Learning of Parametric Mixture Models for Light Transport Simulation. 33, 4 (Aug. 2014), 101:1–101:11. Google ScholarCross Ref
    37. Quan Zheng and Matthias Zwicker. 2019. Learning to importance sample in primary sample space. In Computer Graphics Forum, Vol. 38. Wiley Online Library, 169–179.Google Scholar
    38. Matthias Zwicker, Wojciech Jarosz, Jaakko Lehtinen, Bochang Moon, Ravi Ramamoorthi, Fabrice Rousselle, Pradeep Sen, Cyril Soler, and Sung-Eui Yoon. 2015. Recent Advances in Adaptive Sampling and Reconstruction for Monte Carlo Rendering. 34, 2 (May 2015), 667–681. Google ScholarCross Ref

ACM Digital Library Publication:

Overview Page: