“Real-time skeletal skinning with optimized centers of rotation”

  • ©Binh Huy Le and Jessica K. Hodgins




    Real-time skeletal skinning with optimized centers of rotation

Session/Category Title: RIGGING & SKINNING




    Skinning algorithms that work across a broad range of character designs and poses are crucial to creating compelling animations. Currently, linear blend skinning (LBS) and dual quaternion skinning (DQS) are the most widely used, especially for real-time applications. Both techniques are efficient to compute and are effective for many purposes. However, they also have many well-known artifacts, such as collapsing elbows, candy wrapper twists, and bulging around the joints. Due to the popularity of LBS and DQS, it would be of great benefit to reduce these artifacts without changing the animation pipeline or increasing the computational cost significantly. In this paper, we introduce a new direct skinning method that addresses this problem. Our key idea is to pre-compute the optimized center of rotation for each vertex from the rest pose and skinning weights. At runtime, these centers of rotation are used to interpolate the rigid transformation for each vertex. Compared to other direct skinning methods, our method significantly reduces the artifacts of LBS and DQS while maintaining real-time performance and backwards compatibility with the animation pipeline.


    1. Alexa, M. 2002. Linear combination of transformations. ACM Trans. Graph. 21, 3 (July), 380–387. Google ScholarDigital Library
    2. Anguelov, D., Srinivasan, P., Koller, D., Thrun, S., Rodgers, J., and Davis, J. 2005. Scape: Shape completion and animation of people. ACM Trans. Graph. 24, 3 (July), 408–416. Google ScholarDigital Library
    3. Autodesk, 2016. Creating a character rig by Maya learning channel. https://www.youtube.com/playlist?list=PL8hZ6hQCGHMXKqaX9Og4Ow52jsU_Y5veH. (accessed January 19, 2016).Google Scholar
    4. Bloom, C., and Blow, J., 2004. Errors and omissions in Marc Alexa’s “Linear combination of transformations”. http://www.cbloom.com/3d/techdocs/lcot_errors.pdf. (accessed January 19, 2016).Google Scholar
    5. Buss, S. R., and Fillmore, J. P. 2001. Spherical averages and applications to spherical splines and interpolation. ACM Trans. Graph. 20, 2 (Apr.), 95–126. Google ScholarDigital Library
    6. Capell, S., Burkhart, M., Curless, B., Duchamp, T., and Popović, Z. 2007. Physically based rigging for deformable characters. Graph. Models 69, 1 (Jan.), 71–87. Google ScholarDigital Library
    7. Feng, W.-W., Kim, B.-U., and Yu, Y. 2008. Real-time data driven deformation using kernel canonical correlation analysis. ACM Trans. Graph. 27, 3 (Aug.), 91:1–91:9. Google ScholarDigital Library
    8. Forstmann, S., Ohya, J., Krohn-Grimberghe, A., and McDougall, R. 2007. Deformation styles for spline-based skeletal animation. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 141–150. Google ScholarDigital Library
    9. Hahn, F., Martin, S., Thomaszewski, B., Sumner, R., Coros, S., and Gross, M. 2012. Rig-space physics. ACM Trans. Graph. 31, 4 (July), 72:1–72:8. Google ScholarDigital Library
    10. Hahn, F., Thomaszewski, B., Coros, S., Sumner, R. W., and Gross, M. 2013. Efficient simulation of secondary motion in rig-space. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 165–171. Google ScholarDigital Library
    11. Horn, B. K. P., Hilden, H. M., and Negahdaripour, S. 1988. Closed-form solution of absolute orientation using orthonormal matrices. J. Opt. Soc. Am. A 5, 7 (Jul), 1127–1135.Google ScholarCross Ref
    12. Jacobson, A., and Sorkine, O. 2011. Stretchable and twistable bones for skeletal shape deformation. ACM Trans. Graph. 30, 6 (Dec.), 165:1–165:8. Google ScholarDigital Library
    13. Jacobson, A., Baran, I., Popović, J., and Sorkine, O. 2011. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4 (July), 78:1–78:8. Google ScholarDigital Library
    14. Jacobson, A., Baran, I., Kavan, L., Popović, J., and Sorkine, O. 2012. Fast automatic skinning transformations. ACM Trans. Graph. 31, 4 (July), 77:1–77:10. Google ScholarDigital Library
    15. Jacobson, A., Weinkauf, T., and Sorkine, O. 2012. Smooth shape-aware functions with controlled extrema. Comput. Graph. Forum 31, 5 (Aug.), 1577–1586. Google ScholarDigital Library
    16. Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. 2007. Harmonic coordinates for character articulation. ACM Trans. Graph. 26, 3 (July). Google ScholarDigital Library
    17. Ju, T., Schaefer, S., and Warren, J. 2005. Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24, 3 (July), 561–566. Google ScholarDigital Library
    18. Kabsch, W. 1978. A discussion of the solution for the best rotation to relate two sets of vectors. Acta Crystallographica Section A 34, 827–828.Google ScholarCross Ref
    19. Kavan, L., and Sorkine, O. 2012. Elasticity-inspired deformers for character articulation. ACM Trans. Graph. 31, 6 (Nov.), 196:1–196:8. Google ScholarDigital Library
    20. Kavan, L., and Žára, J. 2005. Spherical blend skinning: A real-time deformation of articulated models. In Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games, ACM, I3D ’05, 9–16. Google ScholarDigital Library
    21. Kavan, L., Collins, S., Žára, J., and O’Sullivan, C. 2008. Geometric skinning with approximate dual quaternion blending. ACM Trans. Graph. 27, 4 (Nov.), 105:1–105:23. Google ScholarDigital Library
    22. Kavan, L., Gerszewski, D., Bargteil, A. W., and Sloan, P.-P. 2011. Physics-inspired upsampling for cloth simulation in games. ACM Trans. Graph. 30, 4 (July), 93:1–93:10. Google ScholarDigital Library
    23. Kim, Y., and Han, J. 2014. Bulging-free dual quaternion skinning. Comput. Animat. Virtual Worlds 25, 3-4, 321–329. Google ScholarDigital Library
    24. Kry, P. G., James, D. L., and Pai, D. K. 2002. Eigenskin: Real time large deformation character skinning in hardware. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 153–159. Google ScholarDigital Library
    25. Lee, S.-H., Sifakis, E., and Terzopoulos, D. 2009. Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans. Graph. 28, 4 (Sept.), 99:1–99:17. Google ScholarDigital Library
    26. Lewis, J. P., and Anjyo, K.-i. 2010. Direct manipulation blendshapes. IEEE Comput. Graph. Appl. 30, 4 (July), 42–50. Google ScholarDigital Library
    27. Lewis, J. P., Cordner, M., and Fong, N. 2000. Pose space deformation: A unified approach to shape interpolation and skeleton-driven deformation. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, 165–172. Google ScholarDigital Library
    28. Li, D., Sueda, S., Neog, D. R., and Pai, D. K. 2013. Thin skin elastodynamics. ACM Trans. Graph. 32, 4 (July), 49:1–49:10. Google ScholarDigital Library
    29. Lipman, Y., Levin, D., and Cohen-Or, D. 2008. Green coordinates. ACM Trans. Graph. 27, 3 (Aug.), 78:1–78:10. Google ScholarDigital Library
    30. Liu, L., Yin, K., Wang, B., and Guo, B. 2013. Simulation and control of skeleton-driven soft body characters. ACM Trans. Graph. 32, 6 (Nov.), 215:1–215:8. Google ScholarDigital Library
    31. Loper, M., Mahmood, N., and Black, M. J. 2014. Mosh: Motion and shape capture from sparse markers. ACM Trans. Graph. 33, 6 (Nov.), 220:1–220:13. Google ScholarDigital Library
    32. Magnenat-Thalmann, N., Laperrière, R., and Thalmann, D. 1988. Joint-dependent local deformations for hand animation and object grasping. In Proceedings of Graphics Interface ’88, 26–33. Google ScholarDigital Library
    33. Magnenat-Thalmann, N., Cordier, F., Seo, H., and Papagianakis, G. 2004. Modeling of bodies and clothes for virtual environments. In Cyberworlds, 2004 International Conference on, 201–208. Google ScholarDigital Library
    34. McAdams, A., Zhu, Y., Selle, A., Empey, M., Tamstorf, R., Teran, J., and Sifakis, E. 2011. Efficient elasticity for character skinning with contact and collisions. ACM Trans. Graph. 30, 4 (July), 37:1–37:12. Google ScholarDigital Library
    35. Merry, B., Marais, P., and Gain, J. 2006. Animation space: A truly linear framework for character animation. ACM Trans. Graph. 25, 4 (Oct.), 1400–1423. Google ScholarDigital Library
    36. Mohr, A., and Gleicher, M. 2003. Building efficient, accurate character skins from examples. ACM Trans. Graph. 22, 3 (July), 562–568. Google ScholarDigital Library
    37. Mukai, T. 2015. Building helper bone rigs from examples. In Proceedings of the 19th ACM Symposium on Interactive 3D Graphics and Games, 77–84. Google ScholarDigital Library
    38. Müller, M., and Chentanez, N. 2011. Solid simulation with oriented particles. ACM Trans. Graph. 30, 4 (July), 92:1–92:10. Google ScholarDigital Library
    39. Öztireli, A. C., Baran, I., Popa, T., Dalstein, B., Sumner, R. W., and Gross, M. 2013. Differential blending for expressive sketch-based posing. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 155–164. Google ScholarDigital Library
    40. Park, S. I., and Hodgins, J. K. 2006. Capturing and animating skin deformation in human motion. ACM Trans. Graph. 25, 3 (July), 881–889. Google ScholarDigital Library
    41. Park, S. I., and Hodgins, J. K. 2008. Data-driven modeling of skin and muscle deformation. ACM Trans. Graph. 27, 3 (Aug.), 96:1–96:6. Google ScholarDigital Library
    42. Rémillard, O., and Kry, P. G. 2013. Embedded thin shells for wrinkle simulation. ACM Trans. Graph. 32, 4 (July), 50:1–50:8. Google ScholarDigital Library
    43. Schlömer, T., Heck, D., and Deussen, O. 2011. Farthest-point optimized point sets with maximized minimum distance. In Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics, 135–142. Google ScholarDigital Library
    44. Seo, J., Irving, G., Lewis, J. P., and Noh, J. 2011. Compression and direct manipulation of complex blendshape models. ACM Trans. Graph. 30, 6 (Dec.), 164:1–164:10. Google ScholarDigital Library
    45. Shoemake, K. 1985. Animating rotation with quaternion curves. In Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, NY, USA, SIGGRAPH ’85, 245–254. Google ScholarDigital Library
    46. Sloan, P.-P. J., Rose, III, C. F., and Cohen, M. F. 2001. Shape by example. In Proceedings of the 2001 ACM Symposium on Interactive 3D Graphics, 135–143. Google ScholarDigital Library
    47. Sorkine, O., and Alexa, M. 2007. As-rigid-as-possible surface modeling. In Proceedings of the Fifth Eurographics Symposium on Geometry Processing, 109–116. Google ScholarDigital Library
    48. Sumner, R. W., and Popović, J. 2004. Deformation transfer for triangle meshes. ACM Trans. Graph. 23, 3 (Aug.), 399–405. Google ScholarDigital Library
    49. Sumner, R. W., Zwicker, M., Gotsman, C., and Popović, J. 2005. Mesh-based inverse kinematics. ACM Trans. Graph. 24, 3 (July), 488–495. Google ScholarDigital Library
    50. Teran, J., Sifakis, E., Irving, G., and Fedkiw, R. 2005. Robust quasistatic finite elements and flesh simulation. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 181–190. Google ScholarDigital Library
    51. Tsoli, A., Mahmood, N., and Black, M. J. 2014. Breathing life into shape: Capturing, modeling and animating 3D human breathing. ACM Trans. Graph. 33, 4 (July), 52:1–52:11. Google ScholarDigital Library
    52. Vaillant, R., Barthe, L., Guennebaud, G., Cani, M.-P., Rohmer, D., Wyvill, B., Gourmel, O., and Paulin, M. 2013. Implicit skinning: Real-time skin deformation with contact modeling. ACM Trans. Graph. 32, 4 (July), 125:1–125:12. Google ScholarDigital Library
    53. Vaillant, R., Guennebaud, G., Barthe, L., Wyvill, B., and Cani, M.-P. 2014. Robust iso-surface tracking for interactive character skinning. ACM Trans. Graph. 33, 6 (Nov.), 189:1–189:11. Google ScholarDigital Library
    54. Wang, X. C., and Phillips, C. 2002. Multi-weight enveloping: Least-squares approximation techniques for skin animation. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 129–138. Google ScholarDigital Library
    55. Wang, R. Y., Pulli, K., and Popović, J. 2007. Real-time enveloping with rotational regression. ACM Trans. Graph. 26, 3 (July). Google ScholarDigital Library
    56. Weber, O., Sorkine, O., Lipman, Y., and Gotsman, C. 2007. Context-aware skeletal shape deformation. Comput. Graph. Forum 26, 3, 265–274.Google ScholarCross Ref
    57. Yang, X., Somasekharan, A., and Zhang, J. J. 2006. Curve skeleton skinning for human and creature characters: Research articles. Comput. Animat. Virtual Worlds 17, 3-4 (July), 281–292. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: