“RAPter: rebuilding man-made scenes with regular arrangements of planes”

  • ©Aron Monszpart, Nicolas Mellado, Gabriel J. Brostow, and Niloy J. Mitra




    RAPter: rebuilding man-made scenes with regular arrangements of planes


Session Title: Reconstruction & Analysis



    With the proliferation of acquisition devices, gathering massive volumes of 3D data is now easy. Processing such large masses of pointclouds, however, remains a challenge. This is particularly a problem for raw scans with missing data, noise, and varying sampling density. In this work, we present a simple, scalable, yet powerful data reconstruction algorithm. We focus on reconstruction of man-made scenes as regular arrangements of planes (RAP), thereby selecting both local plane-based approximations along with their global inter-plane relations. We propose a novel selection formulation to directly balance between data fitting and the simplicity of the resulting arrangement of extracted planes. The main technical contribution is a formulation that allows less-dominant orientations to still retain their internal regularity, and not become overwhelmed and regularized by the dominant scene orientations. We evaluate our approach on a variety of complex 2D and 3D pointclouds, and demonstrate the advantages over existing alternative methods.


    1. Anand, A., Koppula, H. S., Joachims, T., and Saxena, A. 2011. Contextually guided semantic labeling and search for 3D point clouds. CoRR.Google Scholar
    2. Arikan, M., Schwärzler, M., Flöry, S., Wimmer, M., and Maierhofer, S. 2013. O-snap: Optimization-based snapping for modeling architecture. ACM TOG 32. Google ScholarDigital Library
    3. Bonami, P., et al. 2008. An algorithmic framework for convex mixed integer nonlinear programs. Discret. Optim. 5. Google ScholarDigital Library
    4. Boulch, A., de La Gorce, M., and Marlet, R. 2014. Piecewise-planar 3D reconstruction with edge and corner regularization. Computer Graphics Forum 33. Google ScholarDigital Library
    5. Chen, K., Lai, Y.-K., Wu, Y.-X., Martin, R., and Hu, S.- M. 2014. Automatic semantic modeling of indoor scenes from low-quality RGB-D data using contextual information. ACM SIGGRAPH Asia 33. Google ScholarDigital Library
    6. Chum, O., and Matas, J. 2005. Matching with PROSAC: Progressive sample consensus. In ICCV. Google ScholarDigital Library
    7. Furukawa, Y., Curless, B., Seitz, S. M., and Szeliski, R. 2009. Manhattan-world stereo. In CVPR.Google Scholar
    8. Gallup, D., Frahm, J.-M., Mordohai, P., Yang, Q., and Pollefeys, M. 2007. Real-time plane-sweeping stereo with multiple sweeping directions. In CVPR.Google Scholar
    9. Gschwandtner, M. 2013. Support Framework for Obstacle Detection on Autonomous Trains. PhD thesis, Univ. Salzburg.Google Scholar
    10. Isack, H., and Boykov, Y. 2012. Energy-based geometric multi-model fitting. IJCV 97. Google ScholarDigital Library
    11. Kim, Y. M., Mitra, N. J., Yan, D.-M., and Guibas, L. 2012. Acquiring 3D Indoor Environments with Variability and Repetition. ACM SIGGRAPH Asia 31. Google ScholarDigital Library
    12. Kim, B., Kohli, P., and Savarese, S. 2013. 3D Scene Understanding by Voxel-CRF. IEEE ICCV. Google ScholarDigital Library
    13. Koppula, H., Anand, A., Joachims, T., and Saxena, A. 2011. Semantic labeling of 3D point clouds for indoor scenes. NIPS.Google Scholar
    14. Lafarge, F., and Alliez, P. 2013. Surface reconstruction through point set structuring. In Proc. of Eurographics.Google Scholar
    15. Li, Y., Wu, X., Chrysanthou, Y., Sharf, A., Cohen-Or, D., and Mitra, N. J. 2011. GlobFit: Consistently fitting primitives by discovering global relations. ACM TOG 30. Google ScholarDigital Library
    16. Li, Y., Zheng, Q., Sharf, A., Cohen-Or, D., Chen, B., and Mitra, N. J. 2011. 2D-3D fusion for layer decomposition of urban facades. In IEEE ICCV. Google ScholarDigital Library
    17. Lin, H., Gao, J., Zhou, Y., Lu, G., Ye, M., Zhang, C., Liu, L., and Yang, R. 2013. Semantic decomposition and reconstruction of residential scenes from lidar data. ACM SIGGRAPH. Google ScholarDigital Library
    18. Mattausch, O., Panozzo, D., Mura, C., Sorkine-Hornung, O., and Pajarola, R. 2014. Object detection and classification from large-scale cluttered indoor scans. CGF. Google ScholarDigital Library
    19. Mehra, R., Zhou, Q., Long, J., Sheffer, A., Gooch, A., and Mitra, N. J. 2009. Abstraction of man-made shapes. ACM SIGGRAPH Asia 28. Google ScholarDigital Library
    20. Nan, L., Sharf, A., Zhang, H., Cohen-Or, D., and Chen, B. 2010. SmartBoxes for interactive urban reconstruction. ACM TOG. Google ScholarDigital Library
    21. Ni, K., Jin, H., and Dellaert, F. 2009. GroupSAC: Efficient consensus in the presence of groupings. IEEE ICCV.Google Scholar
    22. Niessner, M., Zollhöfer, M., Izadi, S., and Stamminger, M. 2013. Real-time 3D reconstruction at scale using voxel hashing. ACM SIGGRAPH Asia. Google ScholarDigital Library
    23. Niessner, M., Dai, A., and Fisher, M. 2014. Combining inertial navigation and ICP for real-time 3D surface reconstruction. CGF Eurographics.Google Scholar
    24. Oesau, S., Lafarge, F., and Alliez, P. 2014. Indoor scene reconstruction using feature sensitive primitive extraction and graph-cut. ISPRS Journ. Photogramm. and Remote Sensing 90.Google Scholar
    25. Pham, T. T., Chin, T.-J., Schindler, K., and Suter, D. 2014. Interacting geometric priors for robust multimodel fitting. IEEE Transaction on Image Processing 23.Google Scholar
    26. Ramalingam, S., and Brand, M. 2013. Lifting 3D manhattan lines from a single image. IEEE ICCV. Google ScholarDigital Library
    27. Rusu, R. B., and Cousins, S. 2011. 3D is here: Point Cloud Library (PCL). In ICRA.Google Scholar
    28. Schenk, O., and Gärtner, K. 2004. Solving unsymmetric sparse systems of linear equations with PARDISO. Future Gener. Comput. Syst.. Google ScholarDigital Library
    29. Schnabel, R., Wahl, R., and Klein, R. 2007. Efficient RANSAC for point-cloud shape detection. CGF 26.Google Scholar
    30. Shao*, T., Monszpart*, A., Zheng, Y., Koo, B., Xu, W., Zhou, K., and Mitra, N. 2014. Imagining the unseen: Stability-based cuboid arrangements for scene understanding. ACM SIGGRAPH Asia. Google ScholarDigital Library
    31. Sharf, A., Huang, H., Liang, C., Zhang, J., Chen, B., and Gong, M. 2013. Mobility-trees for indoor scenes manipulation. CGF. Google ScholarDigital Library
    32. Shen, C.-H., Fu, H., Chen, K., and Hu, S.-M. 2012. Structure recovery by part assembly. ACM SIGGRAPH Asia 31. Google ScholarDigital Library
    33. Silberman, N., and Fergus, R. 2011. Indoor scene segmentation using a structured light sensor. In Proc. ICCV – Workshop on 3D Representation and Recognition.Google Scholar
    34. Sinha, S. N., Steedly, D., Szeliski, R., Agrawala, M., and Pollefeys, M. 2008. Interactive 3D architectural modeling from unordered photo collections. ACM TOG 27. Google ScholarDigital Library
    35. Straub, J., Rosman, G., Freifeld, O., Leonard, J. J., and Fisher III, J. W. 2014. A Mixture of Manhattan Frames: Beyond the Manhattan World. IEEE CVPR. Google ScholarDigital Library
    36. Wächter, A., and Biegler, L. T. 2006. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Mathematical Programming 106. Google ScholarDigital Library
    37. Yan, F., Sharf, A., Lin, W., Huang, H., and Chen, B. 2014. Proactive 3D scanning of inaccessible parts. ACM SIGGRAPH. Google ScholarDigital Library
    38. Yumer, M. E., and Kara, L. B. 2012. Co-abstraction of shape collections. ACM SIGGRAPH Asia 31. Google ScholarDigital Library
    39. Zheng, Q., Sharf, A., Wan, G., Li, Y., Mitra, N. J., Chen, B., and Cohen-Or, D. 2010. Non-local scan consolidation for 3D urban scene. ACM SIGGRAPH 29. Google ScholarDigital Library

ACM Digital Library Publication: