“Rapid design of articulated objects” by Lee, Kim and Bae

  • ©Joon Hyub Lee, Hanbit Kim, and Seok-Hyung Bae




    Rapid design of articulated objects



    Designing articulated objects is challenging because, unlike with static objects, it requires complex decisions to be made regarding the form, parts, rig, poses, and motion. We present a novel 3D sketching system for rapidly authoring concepts of articulated objects for the early stages of design, when designers make such decisions. Compared to existing CAD software, which focuses on slowly but elaborately producing models consisting of precise surfaces and volumes, our system focuses on quickly but roughly producing models consisting of key curves through a small set of coherent pen and multi-touch gestures. We found that professional designers could easily learn and use our system and author compelling concepts in a short time, showing that 3D sketching can be extended to designing articulated objects and is generally applicable in film, animation, game, and product design.


    1. Rahul Arora, Rubaiat Habib Kazi, Fraser Anderson, Tovi Grossman, Karan Singh, and George Fitzmaurice. 2017. Experimental evaluation of sketching on surfaces in VR. In Proc. CHI ’17. 5643–5654. Google ScholarDigital Library
    2. Rahul Arora and Karan Singh. 2021. Mid-air drawing of curves on 3D surfaces in virtual reality. ACM Trans. Graph. 40, 3, Article 33 (Jul 2021), 17 pages. Google ScholarDigital Library
    3. Oscar Kin-Chung Au, Chiew-Lan Tai, and Hongbo Fu. 2012. Multitouch gestures for constrained transformation of 3D objects. Comput. Graph. Forum 31, 2 (2012), 651–660. Google ScholarDigital Library
    4. Seok-Hyung Bae, Ravin Balakrishnan, and Karan Singh. 2008. ILoveSketch: as-natural-as-possible sketching system for creating 3D curve models. In Proc. UIST ’08. 151–160. Google ScholarDigital Library
    5. Seok-Hyung Bae, Ravin Balakrishnan, and Karan Singh. 2009. EverybodyLovesSketch: 3D sketching for a broader audience. In Proc. UIST ’09. 59–68. Google ScholarDigital Library
    6. Ronald M. Baecker. 1969. Picture-driven animation. In Proc. AFIPS ’69 (Spring). 273–288. Google ScholarDigital Library
    7. Péter Borosán, Ming Jin, Doug DeCarlo, Yotam Gingold, and Andrew Nealen. 2012. RigMesh: automatic rigging for part-based shape modeling and deformation. ACM Trans. Graph. 31, 6, Article 198 (Nov 2012), 9 pages. Google ScholarDigital Library
    8. Byungkuk Choi, Roger Blanco i Ribera, J. P. Lewis, Yeongho Seol, Seokpyo Hong, Haegwang Eom, Sunjin Jung, and Junyong Noh. 2016. SketchiMo: sketch-based motion editing for articulated characters. ACM Trans. Graph. 35, 4, Article 146 (Jul 2016), 12 pages. Google ScholarDigital Library
    9. Aurélie Cohé, Fabrice Dècle, and Martin Hachet. 2011. tBox: a 3D transformation widget designed for touch-screens. In Proc. CHI ’11. 3005–3008. Google ScholarDigital Library
    10. Richard C. Davis, Brien Colwell, and James A. Landay. 2008. K-Sketch: a “kinetic” sketch pad for novice animators. In Proc. CHI ’08. 413–422. Google ScholarDigital Library
    11. Pierre Dragicevic, Gonzalo Ramos, Jacobo Bibliowitcz, Derek Nowrouzezahrai, Ravin Balakrishnan, and Karan Singh. 2008. Video browsing by direct manipulation. In Proc. CHI ’08. 237–246. Google ScholarDigital Library
    12. Marek Dvorožňák, Daniel Sýkora, Cassidy Curtis, Brian Curless, Olga Sorkine-Hornung, and David Salesin. 2020. Monster mash: a single-view approach to casual 3D modeling and animation. ACM Trans. Graph. 39, 6, Article 214 (Nov 2020), 12 pages. Google ScholarDigital Library
    13. Martin Guay, Rémi Ronfard, Michael Gleicher, and Marie-Paule Cani. 2015. Space-time sketching of character animation. ACM Trans. Graph. 34, 4, Article 118 (Jul 2015), 10 pages. Google ScholarDigital Library
    14. Yves Guiard. 1987. Asymmetric division of labor in human skilled bimanual action. J. Mot. Behav. 19, 4 (1987), 486–517. Google ScholarCross Ref
    15. Devamardeep Hayatpur, Seongkook Heo, Haijun Xia, Wolfgang Stuerzlinger, and Daniel Wigdor. 2019. Plane, ray, and point: enabling precise spatial manipulations with shape constraints. In Proc. UIST ’19. 1185–1195. Google ScholarDigital Library
    16. Ken Hinckley, Koji Yatani, Michel Pahud, Nicole Coddington, Jenny Rodenhouse, Andy Wilson, Hrvoje Benko, and Bill Buxton. 2010. Pen + touch = new tools. In Proc. UIST ’10. 27–36. Google ScholarDigital Library
    17. Takeo Igarashi and John F. Hughes. 2003. Smooth meshes for sketch-based freeform modeling. In Proc. I3D ’03. 139–142. Google ScholarDigital Library
    18. Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. 1999. Teddy: a sketching interface for 3D freeform design. In Proc. SIGGRAPH ’99. 409–416. Google ScholarDigital Library
    19. Takeo Igarashi, Tomer Moscovich, and John F. Hughes. 2005. As-rigid-as-possible shape manipulation. ACM Trans. Graph. 24, 3 (Jul 2005), 1134–1141. Google ScholarDigital Library
    20. Ming Jin, Dan Gopstein, Yotam Gingold, and Andrew Nealen. 2015. AniMesh: interleaved animation, modeling, and editing. ACM Trans. Graph. 34, 6, Article 207 (Oct 2015), 8 pages. Google ScholarDigital Library
    21. Thorsten Karrer, Malte Weiss, Eric Lee, and Jan Borchers. 2008. DRAGON: a direct manipulation interface for frame-accurate in-scene video navigation. In Proc. CHI ’08. 247–250. Google ScholarDigital Library
    22. Rubaiat Habib Kazi, Fanny Chevalier, Tovi Grossman, and George Fitzmaurice. 2014. Kitty: sketching dynamic and interactive illustrations. In Proc. UIST ’14. 395–405. Google ScholarDigital Library
    23. Yongkwan Kim, Sang-Gyun An, Joon Hyub Lee, and Seok-Hyung Bae. 2018. Agile 3D sketching with air scaffolding. In Proc. CHI ’18. Article 238, 12 pages. Google ScholarDigital Library
    24. Yongkwan Kim and Seok-Hyung Bae. 2016. SketchingWithHands: 3D sketching handheld products with first-person hand posture. In Proc. UIST ’16. 797–808. Google ScholarDigital Library
    25. Joon Hyub Lee, Hyung-Gi Ham, and Seok-Hyung Bae. 2020. 3D sketching for multi-pose products. In CHI EA ’20. Article 261, 8 pages. Google ScholarDigital Library
    26. Xiaolong Li, He Wang, Li Yi, Leonidas J. Guibas, A. Lynn Abbott, and Shuran Song. 2020. Category-level articulated object pose estimation. In Proc. CVPR ’20. 3706–3715. Google ScholarCross Ref
    27. C. Karen Liu and Zoran Popović. 2002. Synthesis of complex dynamic character motion from simple animations. ACM Trans. Graph. 21, 3 (Jul 2002), 408–416. Google ScholarDigital Library
    28. Daniel Mendes, Fabio Marco Caputo, Andrea Giachetti, Alfredo Ferreira, and Joaquim Jorge. 2019. A survey on 3D virtual object manipulation: from the desktop to immersive virtual environments. Comput. Graph. Forum 38, 1 (2019), 21–45. Google ScholarCross Ref
    29. Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc Alexa. 2007. FiberMesh: designing freeform surfaces with 3D curves. In Proc. SIGGRAPH ’07. 41–es. Google ScholarDigital Library
    30. Jason L. Reisman, Philip L. Davidson, and Jefferson Y. Han. 2009. A screen-space formulation for 2D and 3D direct manipulation. In Proc. UIST ’09. 69–78. Google ScholarDigital Library
    31. Tianjia Shao, Wilmot Li, Kun Zhou, Weiwei Xu, Baining Guo, and Niloy J. Mitra. 2013. Interpreting concept sketches. ACM Trans. Graph. 32, 4, Article 56 (Jul 2013), 10 pages. Google ScholarDigital Library
    32. Sebastian Starke, Norman Hendrich, Dennis Krupke, and Jianwei Zhang. 2017. Evolutionary multi-objective inverse kinematics on highly articulated and humanoid robots. In Proc. IROS ’17. 6959–6966. Google ScholarDigital Library
    33. Matthew Thorne, David Burke, and Michiel van de Panne. 2004. Motion doodles: an interface for sketching character motion. ACM Trans. Graph. 23, 3 (Aug 2004), 424–431. Google ScholarDigital Library
    34. Benjamin Walther-Franks, Marc Herrlich, Thorsten Karrer, Moritz Wittenhagen, Roland Schröder-Kroll, Rainer Malaka, and Jan Borchers. 2012. DRAGIMATION: direct manipulation keyframe timing for performance-based animation. In Proc. GI ’12. 101–108.Google Scholar
    35. Lumin Yang, Jiajie Zhuang, Hongbo Fu, Xiangzhi Wei, Kun Zhou, and Youyi Zheng. 2021. SketchGNN: semantic sketch segmentation with graph neural networks. ACM Trans. Graph. 40, 3, Article 28 (Aug 2021), 13 pages. Google ScholarDigital Library
    36. Emilie Yu, Rahul Arora, Tibor Stanko, J. Andreas Bærentzen, Karan Singh, and Adrien Bousseau. 2021a. CASSIE: curve and surface sketching in immersive environments. In Proc. CHI ’21. Article 190, 14 pages. Google ScholarDigital Library
    37. Xue Yu, Stephen DiVerdi, Akshay Sharma, and Yotam Gingold. 2021b. ScaffoldSketch: accurate industrial design drawing in VR. In Proc. UIST ’21. 372–384. Google ScholarDigital Library
    38. Robert C. Zeleznik, Kenneth P. Herndon, and John F. Hughes. 1996. SKETCH: an interface for sketching 3D scenes. In Proc. SIGGRAPH ’96. 163–170. Google ScholarDigital Library
    39. He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. 2018. Mode-adaptive neural networks for quadruped motion control. ACM Trans. Graph. 37, 4, Article 145 (Jul 2018), 11 pages. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: