“Rapid deployment of curved surfaces via programmable auxetics” by Konaković-Luković, Panetta, Crane and Pauly

  • ©Mina Konaković-Luković, Julian Panetta, Keenan Crane, and Mark Pauly



Entry Number: 106

Session Title:

    Flattening, Unflattening and Sampling


    Rapid deployment of curved surfaces via programmable auxetics




    Deployable structures are physical mechanisms that can easily transition between two or more geometric configurations; such structures enable industrial, scientific, and consumer applications at a wide variety of scales. This paper develops novel deployable structures that can approximate a large class of doubly-curved surfaces and are easily actuated from a flat initial state via inflation or gravitational loading. The structures are based on two-dimensional rigid mechanical linkages that implicitly encode the curvature of the target shape via a user-programmable pattern that permits locally isotropic scaling under load. We explicitly characterize the shapes that can be realized by such structures—in particular, we show that they can approximate target surfaces of positive mean curvature and bounded scale distortion relative to a given reference domain. Based on this observation, we develop efficient computational design algorithms for approximating a given input geometry. The resulting designs can be rapidly manufactured via digital fabrication technologies such as laser cutting, CNC milling, or 3D printing. We validate our approach through a series of physical prototypes and present several application case studies, ranging from surgical implants to large-scale deployable architecture.


    1. Bernd Bickel, Moritz Bächer, Miguel A. Otaduy, Hyunho Richard Lee, Hanspeter Pfister, Markus Gross, and Wojciech Matusik. 2010. Design and Fabrication of Materials with Desired Deformation Behavior. ACM Trans. Graph. 29, 4, Article 63 (July 2010), 10 pages. Google ScholarDigital Library
    2. Sofien Bouaziz, Mario Deuss, Yuliy Schwartzburg, Thibaut Weise, and Mark Pauly. 2012. Shape-Up: Shaping Discrete Geometry with Projections. Comput. Graph. Forum 31, 5 (2012), 1657–1667. Google ScholarDigital Library
    3. Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014. Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans. Graph. 33, 4, Article 154 (July 2014), 11 pages. Google ScholarDigital Library
    4. Isaac Chao, Ulrich Pinkall, Patrick Sanan, and Peter Schröder. 2010. A Simple Geometric Model for Elastic Deformations. ACM Trans. Graph. 29, 4, Article 38 (July 2010), 6 pages. Google ScholarDigital Library
    5. Xiang Chen, Changxi Zheng, Weiwei Xu, and Kun Zhou. 2014. An Asymptotic Numerical Method for Inverse Elastic Shape Design. ACM Trans. Graph. 33, 4, Article 95 (July 2014), 11 pages. Google ScholarDigital Library
    6. Fionnuala Connolly, Conor J. Walsh, and Katia Bertoldi. 2017. Automatic design of fiber-reinforced soft actuators for trajectory matching. Proceedings of the National Academy of Sciences 114, 1 (2017), 51–56.Google ScholarCross Ref
    7. Bailin Deng, Sofien Bouaziz, Mario Deuss, Alexandre Kaspar, Yuliy Schwartzburg, and Mark Pauly. 2015. Interactive Design Exploration for Constrained Meshes. Computer-Aided Design 61 (2015), 13–23. Google ScholarDigital Library
    8. Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H. Barr. 1999. Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’99). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, 317–324. Google ScholarDigital Library
    9. Mario Deuss, Anders Holden Deleuran, Sofien Bouaziz, Bailin Deng, Daniel Piker, and Mark Pauly. 2015. ShapeOp—A Robust and Extensible Geometric Modelling Paradigm. Springer International Publishing, 505–515.Google Scholar
    10. Günay Doğan and Ricardo H. Nochetto. 2012. ESAIM: Mathematical Modelling and Numerical Analysis 46, 1 (2012), 59–79.Google Scholar
    11. Levi H. Dudte, Etienne Vouga, Tomohiro Tachi, and L. Mahadevan. 2016. Programming curvature using origami tessellations. Nature Materials 15, 5 (2016), 583–588.Google ScholarCross Ref
    12. J. Eells and J. C. Wood. 1976. Restrictions on Harmonic Maps of Surfaces. Topology 15 (1976), 263–266.Google ScholarCross Ref
    13. Santiago Fernandez. 2006. Structural Design in the Work of Gaudi. 49 (12 2006), 324–339.Google Scholar
    14. Jan Friedrich, Sven Pfeiffer, and Christoph Gengnagel. 2018. Locally Varied Auxetic Structures for Doubly-Curved Shapes. Springer Singapore, Singapore, 323–336.Google Scholar
    15. C.J. Gantes. 2001. Deployable Structures: Analysis and Design. WIT Press.Google Scholar
    16. Mohammad Ghomi. 2017. Open Problems in Geometry of Curves and Surfaces, http://people.math.gatech.edu/~ghomi/Papers/op.pdf. (Oct. 2017). Accessed: 2017-12-12.Google Scholar
    17. Ruslan Guseinov, Eder Miguel, and Bernd Bickel. 2017. CurveUps: Shaping Objects from Flat Plates with Tension-actuated Curvature. ACM Trans. Graph. 36, 4, Article 64 (July 2017), 12 pages. Google ScholarDigital Library
    18. Caigui Jiang, Chengcheng Tang, Amir Vaxman, Peter Wonka, and Helmut Pottmann. 2015. Polyhedral Patterns. ACM Trans. Graph. 34, 6, Article 172 (Oct. 2015), 12 pages. Google ScholarDigital Library
    19. Sun-Jeong Kim, Soo-Kyun Kim, and Chang-Hun Kim. 2002. Discrete differential error metric for surface simplification. In 10th Pacific Conference on Computer Graphics and Applications, 2002. Proceedings. 276–283. Google ScholarDigital Library
    20. Mina Konaković, Keenan Crane, Bailin Deng, Sofien Bouaziz, Daniel Piker, and Mark Pauly. 2016. Beyond Developable: Computational Design and Fabrication with Auxetic Materials. ACM Trans. Graph. 35, 4, Article 89 (July 2016), 11 pages. Google ScholarDigital Library
    21. W. Y. Lam. 2017. Minimal surfaces from infinitesimal deformations of circle packings. ArXiv e-prints (Dec. 2017).Google Scholar
    22. Ying Liu, Brandi Shaw, Michael D. Dickey, and Jan Genzer. 2017. Sequential self-folding of polymer sheets. Science Advances 3, 3 (2017).Google Scholar
    23. Li-Ke Ma, Yizhong Zhang, Yang Liu, Kun Zhou, and Xin Tong. 2017. Computational Design and Fabrication of Soft Pneumatic Objects with Desired Deformations. ACM Trans. Graph. 36, 6, Article 239 (Nov. 2017), 12 pages. Google ScholarDigital Library
    24. I. Niven. 1981. Maxima and Minima Without Calculus. Number v. 6 in Dolciani Mathematical Expositions. Mathematical Association of America.Google Scholar
    25. Jifei Ou, Mélina Skouras, Nikolaos Vlavianos, Felix Heibeck, Chin-Yi Cheng, Jannik Peters, and Hiroshi Ishii. 2016. aeroMorph – Heat-sealing Inflatable Shape-change Materials for Interaction Design. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (VIST ’16). ACM, New York, NY, USA, 121–132. Google ScholarDigital Library
    26. Johannes T. B. Overvelde, Twan A. de Jong, Yanina Shevchenko, Sergio A. Becerra, George M. Whitesides, James C. Weaver, Chuck Hoberman, and Katia Bertoldi. 2016. A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom. 7 (11 03 2016).Google Scholar
    27. Julian Panetta, Qingnan Zhou, Luigi Malomo, Nico Pietroni, Paolo Cignoni, and Denis Zorin. 2015. Elastic Textures for Additive Fabrication. ACM Trans. Graph. 34, 4, Article 135 (July 2015), 12 pages. Google ScholarDigital Library
    28. Jesús Pérez, Miguel A. Otaduy, and Bernhard Thomaszewski. 2017. Computational Design and Automated Fabrication of Kirchhoff-plateau Surfaces. ACM Trans. Graph. 36, 4, Article 62 (July 2017), 12 pages. Google ScholarDigital Library
    29. Jesús Pérez, Bernhard Thomaszewski, Stelian Coros, Bernd Bickel, José A. Canabal, Robert Sumner, and Miguel A. Otaduy. 2015. Design and Fabrication of Flexible Rod Meshes. ACM Trans. Graph. 34, 4, Article 138 (July 2015), 12 pages. Google ScholarDigital Library
    30. Ahmad Rafsanjani and Damiano Pasini. 2016. Bistable auxetic mechanical metamaterials inspired by ancient geometric motifs. Extreme Mechanics Letters 9 (2016), 291 — 296.Google ScholarCross Ref
    31. Dan Raviv, Wei Zhao, Carrie McKnelly, Athina Papadopoulou, Achuta Kadambi, Boxin Shi, Shai Hirsch, Daniel Dikovsky, Michael Zyracki, Carlos Olguin, Ramesh Raskar, and Skylar Tibbits. 2014. Active Printed Materials for Complex Self-Evolving Deformations. 4 (18 12 2014).Google Scholar
    32. Rohan Sawhney and Keenan Crane. 2017. Boundary First Flattening. ACM Trans. Graph. 37, 1, Article 5 (Dec. 2017), 14 pages. Google ScholarDigital Library
    33. Krishna Kumar Saxena, Raj Das, and Emilio P. Calius. 2016. Three Decades of Auxetics Research – Materials with Negative Poisson’s Ratio: A Review. Advanced Engineering Materials 18, 11 (2016), 1847–1870.Google ScholarCross Ref
    34. Alexander Schiftner, Mathias Höbinger, Johannes Wallner, and Helmut Pottmann. 2009. Packing Circles and Spheres on Surfaces. ACM Trans. Graph. 28, 5, Article 139 (Dec. 2009), 8 pages. Google ScholarDigital Library
    35. Christian Schumacher, Bernd Bickel, Jan Rys, Steve Marschner, Chiara Daraio, and Markus Gross. 2015. Microstructures to Control Elasticity in 3D Printing. ACM Trans. Graph. 34, 4, Article 136 (July 2015), 13 pages. Google ScholarDigital Library
    36. Mélina Skouras, Bernhard Thomaszewski, Bernd Bickel, and Markus Gross. 2012. Computational Design of Rubber Balloons. Comput. Graph. Forum 31, 2pt4 (May 2012), 835–844. Google ScholarDigital Library
    37. Mélina Skouras, Bernhard Thomaszewski, Peter Kaufmann, Akash Garg, Bernd Bickel, Eitan Grinspun, and Markus Gross. 2014. Designing Inflatable Structures. ACM Trans. Graph. 33, 4, Article 63 (July 2014), 10 pages. Google ScholarDigital Library
    38. Olga Sorkine and Marc Alexa. 2007. As-rigid-as-possible Surface Modeling. In Proceedings of the Fifth Eurographics Symposium on Geometry Processing (SGP ’07). Eurographics Association, 109–116. Google ScholarDigital Library
    39. Hideshi Tomita, Takashi Higaki, Toshiki Kobayashi, Takanari Fujii, and Kazuto Fujimoto. 2016. Stenting for curved lesions using a novel curved balloon: Preliminary experimental study. 66 (8 2016), 120–124. Issue 2.Google Scholar
    40. Shinji Umeyama. 1991. Least-Squares Estimation of Transformation Parameters Between Two Point Patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13, 4 (1991), 376–380. Google ScholarDigital Library
    41. Amir Vaxman, Christian Müller, and Ofir Weber. 2017. Regular Meshes from Polygonal Patterns. ACM Trans. Graph. 36, 4, Article 113 (July 2017), 15 pages. Google ScholarDigital Library
    42. Changxi Zheng, Timothy Sun, and Xiang Chen. 2016. Deployable 3D Linkages with Collision Avoidance. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’16). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 179–188. Google ScholarDigital Library
    43. Bo Zhu, Mélina Skouras, Desai Chen, and Wojciech Matusik. 2017. Two-Scale Topology Optimization with Microstructures. ACM Trans. Graph. 36, 5, Article 164 (July 2017), 16 pages. Google ScholarDigital Library

ACM Digital Library Publication: