“Pressure Boundaries for Implicit Incompressible SPH” by Band, Gissler, Ihmsen, Cornelis, Peer, et al. …

  • ©Stefan Band, Christoph Gissler, Markus Ihmsen, Jens Cornelis, Andreas Peer, and Matthias Teschner

  • ©Stefan Band, Christoph Gissler, Markus Ihmsen, Jens Cornelis, Andreas Peer, and Matthias Teschner




    Pressure Boundaries for Implicit Incompressible SPH

Session/Category Title: Fluids 1: Raiders of the Lost Volume




    Implicit incompressible SPH (IISPH) solves a pressure Poisson equation (PPE). While the solution of the PPE provides pressure at fluid samples, the embedded boundary handling does not compute pressure at boundary samples. Instead, IISPH uses various approximations to remedy this deficiency. In this article, we illustrate the issues of these IISPH approximations. We particularly derive Pressure Boundaries, a novel boundary handling that overcomes previous IISPH issues by the computation of physically meaningful pressure values at boundary samples. This is basically achieved with an extended PPE. We provide a detailed description of the approach that focuses on additional technical challenges due to the incorporation of boundary samples into the PPE. We therefore use volume-centric SPH discretizations instead of typically used density-centric ones. We further analyze the properties of the proposed boundary handling and compare it to the previous IISPH boundary handling. In addition to the fact that the proposed boundary handling provides physically meaningful pressure and pressure gradients at boundary samples, we show further benefits, such as reduced pressure oscillations, improved solver convergence, and larger possible time steps. The memory footprint of fluid samples is reduced and performance gain factors of up to five compared to IISPH are presented.


    1. S. Adami, X. Y. Hu, and N. A. Adams. 2012. A generalized wall boundary condition for smoothed particle hydrodynamics. J. Comput. Phys. 231, 21 (Aug. 2012), 7057–7075. Google ScholarDigital Library
    2. Bart Adams, Mark Pauly, Richard Keiser, and Leonidas J. Guibas. 2007. Adaptively sampled particle fluids. ACM Trans. Graph. (TOG) 26, 3, Article 48 (July 2007). Google ScholarDigital Library
    3. Nadir Akinci, Gizem Akinci, and Matthias Teschner. 2013. Versatile surface tension and adhesion for SPH fluids. ACM Trans. Graph. (TOG) 32, 6, Article 182. Google ScholarDigital Library
    4. Nadir Akinci, Markus Ihmsen, Gizem Akinci, Barbara Solenthaler, and Matthias Teschner. 2012. Versatile rigid-fluid coupling for incompressible SPH. ACM Trans. Graph. (TOG) 31, 4, Article 62. Google ScholarDigital Library
    5. Stefan Band, Christoph Gissler, and Matthias Teschner. 2017. Moving least squares boundaries for SPH fluids. In Proceedings of the Workshop on Virtual Reality Interaction and Physical Simulation (VRIPHYS’17).Google ScholarDigital Library
    6. Markus Becker and Matthias Teschner. 2007. Weakly compressible SPH for free surface flows. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 209–217. Google ScholarDigital Library
    7. Markus Becker, Hendrik Tessendorf, and Matthias Teschner. 2009. Direct forcing for lagrangian rigid-fluid coupling. IEEE Trans. Visual. Comput. Graph. 15, 3, 493–503. Google ScholarDigital Library
    8. Jan Bender and Dan Koschier. 2017. Divergence-free SPH for incompressible and viscous fluids. In IEEE Transactions on Visualization and Computer Graphics 23, 3 (2017), 1193–1206. Google ScholarDigital Library
    9. Andrea Colagrossi and Maurizio Landrini. 2003. Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 191, 2 (Nov. 2003), 448–475. Google ScholarDigital Library
    10. Coumans, Erwin. 2017. The bullet physics library. Retrieved from http://www.bulletphysics.org.Google Scholar
    11. Sharen J. Cummins and Murray Rudman. 1999. An SPH projection method. J. Comput. Phys. 152, 2 (July 1999), 584–607. Google ScholarDigital Library
    12. FIFTY2 Technology. 2017. PreonLab. Retrieved from https://www.fifty2.eu.Google Scholar
    13. Christoph Gissler, Stefan Band, Andreas Peer, Markus Ihmsen, and Matthias Teschner. 2017. Generalized drag force for particle-based simulations. In Computers and Graphics 69, C (2017), 1–11. Google ScholarDigital Library
    14. Prashant Goswami, Philipp Schlegel, Barbara Solenthaler, and Renato Pajarola. 2010. Interactive SPH simulation and rendering on the GPU. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’10). Eurographics Association, Aire-la-Ville, Switzerland, 55–64. Google ScholarDigital Library
    15. Xiaowei He, Ning Liu, Sheng Li, Hongan Wang, and Guoping Wang. 2012. Local poisson SPH for viscous incompressible fluids. Comput. Graph. Forum 31, 6 (2012), 1948–1958. Google ScholarDigital Library
    16. Markus Ihmsen, Nadir Akinci, Markus Becker, and Matthias Teschner. 2011. A parallel SPH implementation on multi-core CPUs. In Computer Graphics Forum, Vol. 30. Wiley Online Library, 99–112.Google Scholar
    17. Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias Teschner. 2014a. Implicit incompressible SPH. IEEE Trans. Visual. Comput. Graph. 20, 3 (2014), 426–435. Google ScholarDigital Library
    18. Markus Ihmsen, Jens Orthmann, Barbara Solenthaler, Andreas Kolb, and Matthias Teschner. 2014b. SPH fluids in computer graphics. In Eurographics 2014—State of the Art Reports.Google Scholar
    19. Dan Koschier and Jan Bender. 2017. Density maps for improved SPH boundary handling. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA’17). ACM, New York, NY, Article 1, 10 pages. Google ScholarDigital Library
    20. Shaofan Li and Wing Kam Liu. 2004. Meshfree Particle Methods. Springer-Verlag, Berlin. Google ScholarDigital Library
    21. Joe J. Monaghan. 1992. Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys. 30, 1 (1992), 543–574.Google ScholarCross Ref
    22. Joe J. Monaghan. 1994. Simulating free surface flows with SPH. J. Comput. Phys. 110, 2 (Feb. 1994), 399–406. Google ScholarDigital Library
    23. Joe J. Monaghan. 2005. Smoothed particle hydrodynamics. Reports Progr. Phys. 68, 8 (2005), 1703.Google ScholarCross Ref
    24. Matthias Müller, David Charypar, and Markus Gross. 2003. Particle-based fluid simulation for interactive applications. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 154–159. Google ScholarDigital Library
    25. Matthias Müller, Barbara Solenthaler, Richard Keiser, and Markus Gross. 2005. Particle-based fluid-fluid interaction. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 237–244. Google ScholarDigital Library
    26. Frank Ott and Erik Schnetter. 2003. A modified SPH approach for fluids with large density differences. In ArXiv Physics e-prints. 3112.Google Scholar
    27. Chuck Pheatt. 2008. Intel®threading building blocks. J.Comput. Sci. Colleges 23, 4 (April 2008), 298–298. http://dl.acm.org/citation.cfm?id=1352079.1352134 Google ScholarDigital Library
    28. Daniel J. Price. 2012. Smoothed particle hydrodynamics and magnetohydrodynamics. J. Comput. Phys. 231, 3 (2012), 759–794. Google ScholarDigital Library
    29. Stephan Rosswog. 2015. SPH methods in the modelling of compact objects. Living Rev. Comput. Astrophys. 1 (Dec. 2015), 1.Google ScholarCross Ref
    30. Hagit Schechter and Robert Bridson. 2012. Ghost SPH for animating water. ACM Trans. Graph. (TOG) 31, 4, Article 61. Google ScholarDigital Library
    31. Songdong Shao and Edmond Y. M. Lo. 2003. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv. Water Res. 26, 7 (2003), 787–800.Google ScholarCross Ref
    32. Side Effects Software. 2017. Houdini. Retrieved from www.sidefx.com.Google Scholar
    33. Barbara Solenthaler and Renato Pajarola. 2008. Density contrast SPH interfaces. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 211–218. Google ScholarDigital Library
    34. Barbara Solenthaler and Renato Pajarola. 2009. Predictive-corrective incompressible SPH. ACM Trans. Graph. (TOG) 28, 3, Article 40. Google ScholarDigital Library
    35. Tetsuya Takahashi, Yoshinori Dobashi, Tomoyuki Nishita, and Ming C. Lin. 2016. An efficient hybrid incompressible SPH solver with interface handling for boundary conditions. In Proceedings of the Computer Graphics Forum.Google Scholar
    36. Mehmet Yildiz, R. A. Rook, and Afzal Suleman. 2009. SPH with the multiple boundary tangent method. Int. J. Numer. Methods Eng. 77, 10 (2009), 1416–1438.

ACM Digital Library Publication:

Overview Page: