“Precomputed acceleration noise for improved rigid-body sound” by Chadwick, Zheng and James

  • ©Jeffrey N. Chadwick, Changxi Zheng, and Doug L. James




    Precomputed acceleration noise for improved rigid-body sound



    We introduce an efficient method for synthesizing acceleration noise — sound produced when an object experiences abrupt rigid-body acceleration due to collisions or other contact events. We approach this in two main steps. First, we estimate continuous contact force profiles from rigid-body impulses using a simple model based on Hertz contact theory. Next, we compute solutions to the acoustic wave equation due to short acceleration pulses in each rigid-body degree of freedom. We introduce an efficient representation for these solutions — Precomputed Acceleration Noise — which allows us to accurately estimate sound due to arbitrary rigid-body accelerations. We find that the addition of acceleration noise significantly complements the standard modal sound algorithm, especially for small objects.


    1. Bonneel, N., Drettakis, G., Tsingos, N., Viaud-Delmon, I., and James, D. 2008. Fast Modal Sounds with Scalable Frequency-Domain Synthesis. ACM Transactions on Graphics 27, 3 (Aug.), 24:1–24:9. Google ScholarDigital Library
    2. Chadwick, J. N., An, S. S., and James, D. L. 2009. Harmonic Shells: A Practical Nonlinear Sound Model for Near-Rigid Thin Shells. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia 2009) 28, 3 (Dec.). Google ScholarDigital Library
    3. Chaigne, A., and Lambourg, C. 2001. Time-domain simulation of damped impacted plates. i. theory and experiments. Journal of the Acoustical Society of America 109, 4, 1422–1432.Google ScholarCross Ref
    4. Endo, M., Nishi, S., Nakagawa, M., and Sakata, M. 1981. Sound radiation from a circular cylinder subjected to elastic collision by a sphere. Journal of Sound and Vibration 75, 2, 285–302.Google ScholarCross Ref
    5. Flores, P., Ambrósio, J., Claro, J. C. P., and Lakarani, H. M. 2006. Influence of the contact-impact force model on the dynamic response of multi-body systems. In Proceedings of the Institution of Mechanical Engineers. Part K: Journal of Multi-Body Dynamics, vol. 220, 21–34.Google ScholarCross Ref
    6. Flores, P., Ambrosio, J. A. C., Claro, J. C. P., and Lankarani, H. M. 2008. Springer, ch. 3: Contact-Impact Force Models for Mechanical Systems.Google Scholar
    7. Flores, P., Machado, M., and Silva, M. T. 2011. On the continuous contact force models for soft materials in multibody dynamics. Multibody System Dynamics 25, 3, 357–375.Google ScholarCross Ref
    8. Gilardi, G., and Sharf, I. 2002. Literature survey of contact dynamics modelling. Mechanism and Machine Theory 37, 10, 1213–1239.Google ScholarCross Ref
    9. Guendelman, E., Bridson, R., and Fedkiw, R. 2003. Non-convex rigid bodies with stacking. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2003) 22, 3 (Aug.). Google ScholarDigital Library
    10. Hertz, H. 1882. Über die Berührung fester elastiche Körper and über die harte (On the contact of elastic solids). J. reine und angewandte Mathematk 92, 156–171.Google Scholar
    11. Hippmann, G. 2004. An algorithm for compliant contact between complexly shaped bodies. Multibody System Dynamics 12, 4, 345–362.Google ScholarCross Ref
    12. Hughes, T. J. R. 2000. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis, second ed. Dover Publications, Inc., Mineola, New York.Google Scholar
    13. Hunt, K. H., and Crossley, F. R. E. 1975. Coefficient of restitution interpreted as damping in vibroimpact. Journal of Applied Mechanics 42, 2, 440–445.Google ScholarCross Ref
    14. James, D. L., Barbič, J., and Pai, D. K. 2006. Precomputed Acoustic Transfer: Output-sensitive, accurate sound generation for geometrically complex vibration sources. ACM Transactions on Graphics 25, 3 (July), 987–995. Google ScholarDigital Library
    15. Johnson, K. L. 1985. Contact Mechanics. Cambridge University Press.Google Scholar
    16. Koss, L. L., and Alfredson, R. J. 1973. Transient sound radiated by spheres undergoing and elastic collision. Journal of Sound and Vibration 27, 1, 59–75.Google ScholarCross Ref
    17. Lambourg, C., Chaigne, A., and Matignon, D. 2001. Time-domain simulation of damped impacted plates. ii. numerical model and results. Journal of the Acoustical Society of America 109, 4, 1433–1447.Google ScholarCross Ref
    18. Lankarani, H. M., and Nikravesh, P. E. 1990. A contact force model with hysteresis damping for impact analysis of multibody systems. Journal of Mechanical Design 112, 369–376.Google ScholarCross Ref
    19. Liu, Q.-H., and Tao, K. 1997. The perfectly matched layer for acoustic waves in absorptive media. Journal of the Acoustical Society of America 102, 4, 2072–2082.Google ScholarCross Ref
    20. Liu, Y. J. 2009. Fast Multipole Boundary Element Method: Theory and Applications in Engineering. Cambridge University Press, Cambridge.Google Scholar
    21. Lloyd, B., Raghuvanshi, N., and Govindaraju, N. K. 2011. Sound synthesis for impact sounds in video games. In Proceedings of I3D 2011 Symposium on Interactive 3D Graphics and Games. Google ScholarDigital Library
    22. Mehraby, K., Khademhosseini, H., and Poursina, M. 2011. Impact Noise Radiated by Collision of Two Spheres: Comparison Between Numerical Simulations, Experiments and Analytical Results. Journal of Mechanical Science and Technology 25, 7, 1675–1685.Google ScholarCross Ref
    23. Meyer, M., Desbrun, M., Schröder, P., and Barr, A. H. 2002. Discrete differential-geometry operators for triangulated 2-manifolds. VisMath.Google Scholar
    24. Mitchell, D. P., and Netravali, A. N. 1988. Reconstruction filters in computer-graphics. In Proceedings of SIGGRAPH 1988, 221–228. Google ScholarDigital Library
    25. O’Brien, J. F., Cook, P. R., and Essl, G. 2001. Synthesizing sounds from physically based motion. In Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, 529–536. Google ScholarDigital Library
    26. O’Brien, J. F., Shen, C., and Gatchalian, C. M. 2002. Synthesizing sounds from rigid-body simulations. In ACM SIGGRAPH Symposium on Computer Animation, 175–181. Google ScholarDigital Library
    27. Papetti, S., Avanzini, F., and Rocchesso, D. 2011. Numerical methods for a nonlinear impact model: A comparative study with closed-form corrections. IEEE Transactions on Audio, Speech and Language Processing 19, 7, 2146–2158. Google ScholarDigital Library
    28. Ren, Z., Yeh, H., and Lin, M. 2010. Synthesizing contact sounds between textured models. In Virtual Reality Conference (VR), 2010 IEEE, 139–146. Google ScholarDigital Library
    29. Richards, E. J., Wescott, M. E., and Jayapalan, R. K. 1979. On the prediction of impact noise, i: Acceleration noise. Journal of Sound and Vibration 62, 4, 547–575.Google ScholarCross Ref
    30. Richards, E. J., Wescott, M. E., and Jayapalan, R. K. 1979. On the prediction of impact noise, ii: Ringing noise. Journal of Sound and Vibration 65, 3, 419–451.Google ScholarCross Ref
    31. Ross, A., and Ostiguy, G. 2007. Propagation of the initial transient noise from an impacted plate. Journal of Sound and Vibration 301, 1, 28–42.Google ScholarCross Ref
    32. Schedin, S., Lambourge, C., and Chaigne, A. 1999. Transient sound fields from impacted plates: Comparison between numerical simulations and experiments. Journal of Sound and Vibration 221, 3, 471–490.Google ScholarCross Ref
    33. Schiehlen, W., and Seifried, R. 2004. Three approaches for elastodynamic contact in multibody systems. Multibody System Dynamics 12, 1, 1–16.Google ScholarCross Ref
    34. Serra, X., and Smith, J. 1990. Spectral modeling synthesis: A sound analysis/synthesis system based on a deterministic plus stochastic decomposition. Computer Music Journal 14, 4, 12–24.Google ScholarCross Ref
    35. Shen, L., and Liu, Y. J. 2007. An adaptive fast multipole boundary element method for three-dimensional acoustic wave problems based on the Burton-Miller formulation. Computational Mechanics 40, 3, 461–472.Google ScholarCross Ref
    36. Stoelinga, C. N. J., and Lutfi, R. A. 2011. Modeling manner of contact in the synthesis of impact sounds for perceptual research. Journal of the Acoustical Society of America 130, 2, EL62–EL68.Google ScholarCross Ref
    37. van den Doel, K., Kry, P. G., and Pai, D. K. 2001. FoleyAutomatic: Physically Based Sound Effects for Interactive Simulation and Animation. In Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, 537–544. Google ScholarDigital Library
    38. Verma, T. S., and Meng, T. H. Y. 2000. Extending spectral modeling synthesis with transient modeling synthesis. Computer Music Journal 24, 2, 47–59. Google ScholarDigital Library
    39. Wåhlin, A. O., Gren, P. O., and Molin, N.-E. 1994. On structure borne sound: Experiments showing the initial transient acoustic wave field generated by an impacted plate. Journal of the Acoustical Society of America 96, 5, 2791–2797.Google ScholarCross Ref
    40. Yufang, W., and Zhongfang, T. 1992. Sound Radiated from the Impact of Two Cylinders. Journal of Sound and Vibration 159, 2, 295–303.Google ScholarCross Ref
    41. Zheng, C., and James, D. L. 2010. Rigid-body fracture sound with precomputed soundbanks. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2010) 29, 3 (July). Google ScholarDigital Library
    42. Zheng, C., and James, D. L. 2011. Toward high-quality modal contact sound. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2011) 30, 4 (Aug.). Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: