“Pixie dust: graphics generated by levitated and animated objects in computational acoustic-potential field” by Ochiai, Hoshi and Rekimoto

  • ©Yoichi Ochiai, Takayuki Hoshi, and Jun Rekimoto




    Pixie dust: graphics generated by levitated and animated objects in computational acoustic-potential field

Session/Category Title: Computational Sensing & Display




    We propose a novel graphics system based on the expansion of 3D acoustic-manipulation technology. In conventional research on acoustic levitation, small objects are trapped in the acoustic beams of standing waves. We expand this method by changing the distribution of the acoustic-potential field (APF). Using this technique, we can generate the graphics using levitated small objects. Our approach makes available many expressions, such as the expression by materials and non-digital appearance. These kinds of expressions are used in many applications, and we aim to combine them with digital controllability. In the current system, multiple particles are levitated together at 4.25-mm intervals. The spatial resolution of the position is 0.5 mm. Particles move at up to 72 cm/s. The allowable density of the material can be up to 7 g/cm3. For this study, we use three options of APF: 2D grid, high-speed movement, and combination with motion capture. These are used to realize floating screen or mid-air raster graphics, mid-air vector graphics, and interaction with levitated objects. This paper reports the details of the acoustic-potential field generator on the design, control, performance evaluation, and exploration of the application space. To discuss the various noncontact manipulation technologies in a unified manner, we introduce a concept called “computational potential field” (CPF).


    1. Barnum, P. C., Narasimhan, S. G., and Kanade, T. 2010. A multi-layered display with water drops. ACM Trans. Graph. 29, 4 (July), 76:1–76:7. Google ScholarDigital Library
    2. Brandt, E. H. 1989. Levitation in physics. Science 243, 4889, 349–55.Google Scholar
    3. Carter, T., Seah, S. A., Long, B., Drinkwater, B., and Subramanian, S. 2013. Ultrahaptics: Multi-point mid-air haptic feedback for touch surfaces. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, ACM, New York, NY, USA, UIST ’13, 505–514. Google ScholarDigital Library
    4. Cossairt, O., Napoli, J., Hill, S., Dorval, R., and Favalora, G. 2007. Occlusion-capable multiview volumetric three-dimensional display. Applied Optics 46, 8, 1244–1250.Google ScholarCross Ref
    5. Follmer, S., Leithinger, D., Olwal, A., Hogge, A., and Ishii, H. 2013. inform: Dynamic physical affordances and constraints through shape and object actuation. In Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, ACM, New York, NY, USA, UIST ’13, 417–426. Google ScholarDigital Library
    6. Foresti, D., Nabavi, M., Klingauf, M., Ferrari, A., and Poulikakos, D. 2013. Acoustophoretic contactless transport and handling of matter in air. Proceedings of the National Academy of Sciences.Google Scholar
    7. Goldstein, S. C., Campbell, J. D., and Mowry, T. C. 2005. Programmable matter. IEEE Computer 38, 6 (June), 99–101. Google ScholarDigital Library
    8. Gor’kov, L. P. 1962. On the forces acting on a small particle in an acoustical field in an ideal fluid. Soviet Physics Doklady 6, 773–775.Google Scholar
    9. Heiner, J. M., Hudson, S. E., and Tanaka, K. 1999. The information percolator: Ambient information display in a decorative object. In Proceedings of the 12th Annual ACM Symposium on User Interface Software and Technology, ACM, New York, NY, USA, UIST ’99, 141–148. Google ScholarDigital Library
    10. Hoshi, T., Takahashi, M., Iwamoto, T., and Shinoda, H. 2010. Noncontact tactile display based on radiation pressure of airborne ultrasound. IEEE Transactions on Haptics 3, 3, 155–165. Google ScholarDigital Library
    11. Hoshi, T. 2012. Compact ultrasound device for noncontact interaction. In Advances in Computer Entertainment, Springer, A. Nijholt, T. Romao, and D. Reidsma, Eds., vol. 7624 of Lecture Notes in Computer Science, 502–505. Google ScholarDigital Library
    12. Ishii, H., and Ullmer, B. 1997. Tangible bits: Towards seamless interfaces between people, bits and atoms. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, ACM, New York, NY, USA, CHI ’97, 234–241. Google ScholarDigital Library
    13. Ishii, H., Lakatos, D., Bonanni, L., and Labrune, J.-B. 2012. Radical atoms: Beyond tangible bits, toward transformable materials. interactions 19, 1 (Jan.), 38–51. Google ScholarDigital Library
    14. Iwaki, S., Morimasa, H., Noritsugu, T., and Kobayashi, M. 2011. Contactless manipulation of an object on a plane surface using multiple air jets. In ICRA, IEEE, 3257–3262.Google Scholar
    15. Iwata, H., Yano, H., Nakaizumi, F., and Kawamura, R. 2001. Project feelex: Adding haptic surface to graphics. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, NY, USA, SIGGRAPH ’01, 469–476. Google ScholarDigital Library
    16. Jones, A., McDowall, I., Yamada, H., Bolas, M., and Debevec, P. 2007. Rendering for an interactive 360° light field display. ACM Trans. Graph. 26, 3 (July). Google ScholarDigital Library
    17. Kimura, H., Asano, A., Fujishiro, I., Nakatani, A., and Watanabe, H. 2011. True 3d display. In ACM SIGGRAPH 2011 Emerging Technologies, ACM, New York, NY, USA, SIGGRAPH ’11, 20:1–20:1. Google ScholarDigital Library
    18. Kono, M., Kakehi, Y., and Hoshi, T., 2013. lapillus bug. SIGGRAPH Asia 2013 Art Gallery.Google Scholar
    19. Kozuka, T., Yasui, K., Tuziuti, T., Towata, A., and Iida, Y. 2007. Noncontact acoustic manipulation in air. Japanese Journal of Applied Physics 46, 7S, 4948.Google ScholarCross Ref
    20. Landis, H., 2013. Spaxels. Ars Electronica 2013.Google Scholar
    21. Lee, C., DiVerdi, S., and Hollerer, T. 2009. Depth-fused 3d imagery on an immaterial display. IEEE Trans. Vis. Comput. Graph. 15, 1, 20–33. Google ScholarDigital Library
    22. Lee, J., Post, R., and Ishii, H. 2011. Zeron: Mid-air tangible interaction enabled by computer controlled magnetic levitation. In Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology, ACM, New York, NY, USA, UIST ’11, 327–336. Google ScholarDigital Library
    23. Marshall, M., Carter, T., Alexander, J., and Subramanian, S. 2012. Ultra-tangibles: Creating movable tangible objects on interactive tables. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, ACM, New York, NY, USA, CHI ’12, 2185–2188. Google ScholarDigital Library
    24. Nakamura, M., Inaba, G., Tamaoki, J., Shiratori, K., and Hoshino, J. 2006. Mounting and application of bubble display system: Bubble cosmos. In Proceedings of the 2006 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, ACM, New York, NY, USA, ACE ’06. Google ScholarDigital Library
    25. Nijholt, A., Giusti, L., Minuto, A., and Marti, P. 2012. Smart material interfaces: “a material step to the future”. In Proceedings of the 1st Workshop on Smart Material Interfaces: A Material Step to the Future, ACM, New York, NY, USA, SMI ’12, 1:1–1:3. Google ScholarDigital Library
    26. Nyborg, W. L. 1967. Radiation pressure on a small rigid sphere. Journal of Acoustical Society of America 42, 947–952.Google ScholarCross Ref
    27. Ochiai, Y., Hoshi, T., Oyama, A., and Rekimoto, J. 2013. Poppable display: A display that enables popping, breaking, and tearing interactions with people. In Consumer Electronics (GCCE), 2013 IEEE 2nd Global Conference on, 124–128.Google Scholar
    28. Ochiai, Y., Hoshi, T., and Rekimoto, J. 2014. Three-dimensional mid-air acoustic manipulation by ultrasonic phased arrays. PLoS ONE 9, 5, e97590.Google ScholarCross Ref
    29. Perlin, K., and HAN, J., 2006. Volumetric display with dust as the participating medium, Feb. 14. US Patent 6,997,558.Google Scholar
    30. Poupyrev, I., Nashida, T., Maruyama, S., Rekimoto, J., and Yamaji, Y. 2004. Lumen: Interactive visual and shape display for calm computing. In ACM SIGGRAPH 2004 Emerging Technologies, ACM, New York, NY, USA, SIGGRAPH ’04, 17–. Google ScholarDigital Library
    31. Poupyrev, I., Nashida, T., and Okabe, M. 2007. Actuation and tangible user interfaces: the vaucanson duck, robots, and shape displays. In Tangible and Embedded Interaction, ACM, B. Ullmer and A. Schmidt, Eds., 205–212. Google ScholarDigital Library
    32. Rakkolainen, I., DiVerdi, S., Olwal, A., Candussi, N., Hüllerer, T., Laitinen, M., Piirto, M., and Palovuori, K. 2005. The interactive fogscreen. In ACM SIGGRAPH 2005 Emerging Technologies, ACM, New York, NY, USA, SIGGRAPH ’05. Google ScholarDigital Library
    33. Sodhi, R., Poupyrev, I., Glisson, M., and Israr, A. 2013. Aireal: Interactive tactile experiences in free air. ACM Trans. Graph. 32, 4 (July), 134:1–134:10. Google ScholarDigital Library
    34. TOCHKA. Tochka. http://tochka.jp/ Last accessed on 30 April 2013.Google Scholar
    35. Weber, R., Benmore, C., Tumber, S., Tailor, A., Rey, C., Taylor, L., and Byrn, S. 2012. Acoustic levitation: recent developments and emerging opportunities in biomaterials research. European Biophysics Journal 41, 4, 397–403.Google ScholarCross Ref
    36. Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3d: Tomographic image synthesis for attenuation-based light field and high dynamic range displays. ACM Trans. Graph. 30, 4 (July), 95:1–95:12. Google ScholarDigital Library
    37. Whymark, R. 1975. Acoustic field positioning for containerless processing. Ultrasonics 13, 6, 251–261.Google ScholarCross Ref
    38. Xie, W. J., Cao, C. D., Lu, Y., Hong, Z. Y., and Wei, B. 2006. Acoustic method for levitation of small living animals. Applied Physics Letters 89, 21 (Nov), 214102-214102-3.Google ScholarCross Ref

ACM Digital Library Publication:

Overview Page: