“Photon surfaces for robust, unbiased volumetric density estimation” by Deng, Jiao, Bitterli and Jarosz

  • ©Xi Deng, Shaojie Jiao, Benedikt Bitterli, and Wojciech Jarosz

Conference:


Type:


Title:

    Photon surfaces for robust, unbiased volumetric density estimation

Session/Category Title:   Advanced Volume Rendering


Presenter(s)/Author(s):



Abstract:


    We generalize photon planes to photon surfaces: a new family of unbiased volumetric density estimators which we combine using multiple importance sampling. To derive our new estimators, we start with the extended path integral which duplicates the vertex at the end of the camera and photon subpaths and couples them using a blurring kernel. To make our formulation unbiased, however, we use a delta kernel to couple these two end points. Unfortunately, sampling the resulting singular integral using Monte Carlo is impossible since the probability of generating a contributing light path by independently sampling the two subpaths is zero. Our key insight is that we can eliminate the delta kernel and make Monte Carlo estimation practical by integrating any three dimensions analytically, and integrating only the remaining dimensions using Monte Carlo. We demonstrate the practicality of this approach by instantiating a collection of estimators which analytically integrate the distance along the camera ray and two arbitrary sampling dimensions along the photon subpath (e.g., distance, direction, surface area). This generalizes photon planes to curved “photon surfaces”, including new “photon cone”, “photon cylinder”, “photon sphere”, and multiple new “photon plane” estimators. These estimators allow us to handle light paths not supported by photon planes, including single scattering, and surface-to-media transport. More importantly, since our estimators have complementary strengths due to analytically integrating different dimensions of the path integral, we can combine them using multiple importance sampling. This combination mitigates singularities present in individual estimators, substantially reducing variance while remaining fully unbiased. We demonstrate our improved estimators on a number of scenes containing homogeneous media with highly anisotropic phase functions, accelerating both multiple scattering and single scattering compared to prior techniques.

References:


    1. James Richard Arvo. 1995a. Analytic methods for simulated light transport. Ph.D. Dissertation. Yale University.Google Scholar
    2. James Richard Arvo. 1995b. Applications of irradiance tensors to the simulation of non-Lambertian phenomena. In Annual Conference Series (Proceedings of SIGGRAPH). ACM, 335–342. https://doi.org/10/c2fss9 Google ScholarDigital Library
    3. Rasmus Barringer, Carl Johan Gribel, and Tomas Akenine-Möller. 2012. High-quality curve rendering using line sampled visibility. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 31, 6 (Nov. 2012), 162:1–162:10. https://doi.org/10/f25qxk Google ScholarDigital Library
    4. Laurent Belcour, Guofu Xie, Christophe Hery, Mark Meyer, Wojciech Jarosz, and Derek Nowrouzezahrai. 2018. Integrating clipped spherical harmonics expansions. ACM Transactions on Graphics 37, 2 (March 2018). https://doi.org/10/gd52pf Google ScholarDigital Library
    5. Niels Billen and Philip Dutré. 2016. Line sampling for direct illumination. Computer Graphics Forum (Proceedings of the Eurographics Symposium on Rendering) 35, 4 (June 2016), 93–102. https://doi.org/10/f84z2hGoogle ScholarCross Ref
    6. Benedikt Bitterli. 2018. Tungsten Renderer. https://github.com/tunabrain/tungsten.Google Scholar
    7. Benedikt Bitterli and Wojciech Jarosz. 2017. Beyond points and beams: Higher-dimensional photon samples for volumetric light transport. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 36, 4 (July 2017), 1–12. https://doi.org/10/gfznbr Google ScholarDigital Library
    8. Eva Cerezo, Frederic Pérez, Xavier Pueyo, Francisco J. Seron, and François X. Sillion. 2005. A survey on participating media rendering techniques. The Visual Computer 21, 5 (2005), 303–328. https://doi.org/10/cjxqdt Google ScholarDigital Library
    9. Subrahmanyan Chandrasekhar. 1960. Radiative transfer. Dover Publications, NY.Google Scholar
    10. Min Chen and James Richard Arvo. 2000. A closed-form solution for the irradiance due to linearly-varying luminaires. In Rendering Techniques (Proceedings of the Eurographics Workshop on Rendering). 137–148. https://doi.org/10/gfz9gv Google ScholarDigital Library
    11. Min Chen and James Richard Arvo. 2001. Simulating non-Lambertian phenomena involving linearly-varying luminaires. In Rendering Techniques (Proceedings of the Eurographics Workshop on Rendering). 25–38. https://doi.org/10/chb4qg Google ScholarDigital Library
    12. Per H. Christensen and Wojciech Jarosz. 2016. The path to path-traced movies. Foundations and Trends in Computer Graphics and Vision 10, 2 (Oct. 2016), 103–175. https://doi.org/10/gfjwjc Google ScholarDigital Library
    13. Carsten Dachsbacher, Jaroslav Křivánek, Miloš Hašan, Adam Arbree, Bruce Walter, and Jan Novák. 2014. Scalable realistic rendering with many-light methods. Computer Graphics Forum 33, 1 (2014), 88–104. https://doi.org/10/f5twgd Google ScholarDigital Library
    14. Luca Fascione, Johannes Hanika, Marcos Fajardo, Per Christensen, Brent Burley, Brian Green, Rob Pieké, Christopher Kulla, Christophe Hery, Ryusuke Villemin, Daniel Heckenberg, and André Mazzone. 2017. Path tracing in production (Parts 1 and 2). In ACM SIGGRAPH Courses. https://doi.org/10/gfz2ck Google ScholarDigital Library
    15. Iliyan Georgiev, Jaroslav Křivànek, Tomas Davidovic, and Philipp Slusallek. 2012. Light transport simulation with vertex connection and merging. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 31, 5 (2012), 192:1–192:10. https://doi.org/10/gbb6q7 Google ScholarDigital Library
    16. Iliyan Georgiev, Jaroslav Křivánek, Toshiya Hachisuka, Derek Nowrouzezahrai, and Wojciech Jarosz. 2013. Joint importance sampling of low-order volumetric scattering. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 32, 6 (Nov. 2013), 164:1–164:14. https://doi.org/10/gbd5qs Google ScholarDigital Library
    17. Carl Johan Gribel, Rasmus Barringer, and Tomas Akenine-Möller. 2011. High-quality spatio-temporal rendering using semi-analytical visibility. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 30, 4 (Aug. 2011), 54:1–54:11. https://doi.org/10/fgq7b9 Google ScholarDigital Library
    18. Carl Johan Gribel, Michael Doggett, and Tomas Akenine-Möller. 2010. Analytical motion blur rasterization with compression. In Proceedings of High Performance Graphics. 163–172. https://doi.org/10/f2z5ds Google ScholarDigital Library
    19. Adrien Gruson, Binh-Son Hua, Nicolas Vibert, Derek Nowrouzezahrai, and Toshiya Hachisuka. 2018. Gradient-domain volumetric photon density estimation. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 37, 4 (July 2018), 82:1–82:13. https://doi.org/10/gd52p6 Google ScholarDigital Library
    20. Toshiya Hachisuka, Iliyan Georgiev, Wojciech Jarosz, Jaroslav Křivánek, and Derek Nowrouzezahrai. 2017. Extended path integral formulation for volumetric transport. In Proceedings of the Eurographics Symposium on Rendering (Experimental Ideas & Implementations). https://doi.org/10/gfznb3 Google ScholarDigital Library
    21. Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen. 2008. Progressive photon mapping. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 27, 5 (2008), 130:1–130:8. https://doi.org/10/d8xxn3 Google ScholarDigital Library
    22. Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. 2012. A path space extension for robust light transport simulation. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 31, 5 (2012),191:1–191:10. https://doi.org/10/gbb6n3 Google ScholarDigital Library
    23. Vlastimil Havran, Jiri Bittner, Robert Herzog, and Hans-Peter Seidel. 2005. Ray maps for global illumination. In Rendering Techniques (Proceedings of the Eurographics Symposium on Rendering). 43–54. https://doi.org/10/c2xphk Google ScholarDigital Library
    24. Eric Heitz, Stephen Hill, and Morgan McGuire. 2018. Combining analytic direct illumination and stochastic shadows. In Proceedings of the Symposium on Interactive 3D Graphics and Games (i3D). ACM, 2:1–2:11. https://doi.org/10/gfznb7 Google ScholarDigital Library
    25. David Immel, Michael Cohen, and Donald Greenberg. 1986. A radiosity method for non-diffuse environments. Computer Graphics (Proceedings of SIGGRAPH) 20, 4 (1986), 133–142. https://doi.org/10/dmjm9t Google ScholarDigital Library
    26. Wenzel Jakob. 2013. Light transport on path-space manifolds. Ph.D. Dissertation. Cornell University.Google Scholar
    27. Wojciech Jarosz, Derek Nowrouzezahrai, Iman Sadeghi, and Henrik Wann Jensen. 2011a. A comprehensive theory of volumetric radiance estimation using photon points and beams. ACM Transactions on Graphics 30, 1 (Feb. 2011), 5:1–5:19. https://doi.org/10/fcdh2f Google ScholarDigital Library
    28. Wojciech Jarosz, Derek Nowrouzezahrai, Robert Thomas, Peter-Pike Sloan, and Matthias Zwicker. 2011b. Progressive photon beams. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 30, 6 (Dec. 2011). https://doi.org/10/fn5xzj Google ScholarDigital Library
    29. Wojciech Jarosz, Matthias Zwicker, and Henrik Wann Jensen. 2008. The beam radiance estimate for volumetric photon mapping. Computer Graphics Forum (Proceedings of Eurographics) 27, 2 (April 2008), 557–566. https://doi.org/10/bjsfsxGoogle ScholarCross Ref
    30. Johannes Jendersie. 2018. Path throughput importance weights. arXiv:1806.01005Google Scholar
    31. Henrik Wann Jensen. 1996. Global illumination using photon maps. In Rendering Techniques (Proceedings of the Eurographics Workshop on Rendering). 21–30. https://doi.org/10/fzc6t9 Google ScholarDigital Library
    32. Henrik Wann Jensen and Per H. Christensen. 1998. Efficient simulation of light transport in scenes with participating media using photon maps. In Annual Conference Series (Proceedings of SIGGRAPH). 311–320. https://doi.org/10/b64p36 Google ScholarDigital Library
    33. Thouis R. Jones and Ronald N. Perry. 2000. Antialiasing with line samples. In Rendering Techniques (Proceedings of the Eurographics Workshop on Rendering). 197–206. https://doi.org/10/gfznb9 Google ScholarDigital Library
    34. James T. Kajiya. 1986. The Rendering Equation. Computer Graphics (Proceedings of SIGGRAPH) 20, 4 (Aug. 1986), 143–150. https://doi.org/10/cvf53j Google ScholarDigital Library
    35. Csaba Kelemen, László Szirmay-Kalos, György Antal, and Ferenc Csonka. 2002. A simple and robust mutation strategy for the Metropolis light transport algorithm. Computer Graphics Forum 21, 3 (2002), 531–540. https://doi.org/10/bfrsqnGoogle ScholarCross Ref
    36. Markus Kettunen, Marco Manzi, Miika Aittala, Jaakko Lehtinen, Frédo Durand, and Matthias Zwicker. 2015. Gradient-domain path tracing. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 34, 4 (July 2015), 123:1–123:13. https://doi.org/10/gfzrhn Google ScholarDigital Library
    37. Jaroslav Křivánek, Iliyan Georgiev, Toshiya Hachisuka, Petr Vévoda, Martin Šik, Derek Nowrouzezahrai, and Wojciech Jarosz. 2014. Unifying points, beams, and paths in volumetric light transport simulation. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 33, 4 (July 2014), 103:1–103:13. https://doi.org/10/f6cz72 Google ScholarDigital Library
    38. Eric Lafortune and Yves Willems. 1993. Bi-directional path tracing. In Proceedings of Compugraphics, Vol. 93. 145–153.Google Scholar
    39. Jaakko Lehtinen, Tero Karras, Samuli Laine, Miika Aittala, Frédo Durand, and Timo Aila. 2013. Gradient-domain Metropolis light transport. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 32, 4 (July 2013), 95:1–95:12. https://doi.org/10/gbdghd Google ScholarDigital Library
    40. Jan Novák, Iliyan Georgiev, Johannes Hanika, and Wojciech Jarosz. 2018a. Monte Carlo methods for volumetric light transport simulation. Computer Graphics Forum (Eurographics State of the Art Reports) 37, 2 (May 2018), 551–576. https://doi.org/10/gd2jqqGoogle ScholarCross Ref
    41. Jan Novák, Iliyan Georgiev, Johannes Hanika, Jaroslav Křivánek, and Wojciech Jarosz. 2018b. Monte Carlo methods for physically based volume rendering. In ACM SIGGRAPH Courses. https://doi.org/10/c5fj Google ScholarDigital Library
    42. Jan Novák, Derek Nowrouzezahrai, Carsten Dachsbacher, and Wojciech Jarosz. 2012a. Progressive virtual beam lights. Computer Graphics Forum (Proceedings of the Eurographics Symposium on Rendering) 31, 4 (June 2012), 1407–1413. https://doi.org/10/gfzndw Google ScholarDigital Library
    43. Jan Novák, Derek Nowrouzezahrai, Carsten Dachsbacher, and Wojciech Jarosz. 2012b. Virtual ray lights for rendering scenes with participating media. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 31, 4 (July 2012), 60:1–60:11. https://doi.org/10/gbbwk2 Google ScholarDigital Library
    44. Derek Nowrouzezahrai, Ilya Baran, Kenny Mitchell, and Wojciech Jarosz. 2014. Visibility silhouettes for semi-analytic spherical integration. Computer Graphics Forum 33, 1 (Feb. 2014), 105–117. https://doi.org/10/f5t6tf Google ScholarDigital Library
    45. Mark Pauly, Thomas Kollig, and Alexander Keller. 2000. Metropolis light transport for participating media. In Rendering Techniques (Proceedings of the Eurographics Workshop on Rendering). 11–22. https://doi.org/10/gfzm93 Google ScholarDigital Library
    46. Vincent Pegoraro and Steven G. Parker. 2009. An analytical solution to single scattering in homogeneous participating media. Computer Graphics Forum (Proceedings of Eurographics) 28, 2 (2009), 329–335. https://doi.org/10/c9zhxnGoogle ScholarCross Ref
    47. Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically based rendering: From theory to implementation (3rd ed.). Google ScholarDigital Library
    48. Gurprit Singh and Wojciech Jarosz. 2017. Convergence analysis for anisotropic Monte Carlo sampling spectra. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 36, 4 (July 2017), 137:1–137:14. https://doi.org/10/gbxfhj Google ScholarDigital Library
    49. Gurprit Singh, Bailey Miller, and Wojciech Jarosz. 2017. Variance and convergence analysis of Monte Carlo line and segment sampling. Computer Graphics Forum (Proceedings of the Eurographics Symposium on Rendering) 36, 4 (June 2017), 79–89. https://doi.org/10/gfzncj Google ScholarDigital Library
    50. Jerome Spanier. 1966. Two pairs of families of estimators for transport problems. SIAM J. Appl. Math. 14, 4 (1966), 702–713. https://doi.org/10/dg35ntGoogle ScholarDigital Library
    51. Bo Sun, Ravi Ramamoorthi, Srinivasa G. Narasimhan, and Shree K. Nayar. 2005. A practical analytic single scattering model for real time rendering. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 24, 3 (2005), 1040–1049. https://doi.org/10/fgnbqt Google ScholarDigital Library
    52. Xin Sun, Kun Zhou, Jie Guo, Guofu Xie, Jingui Pan, Wencheng Wang, and Baining Guo. 2013. Line segment sampling with blue-noise properties. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 32, 4 (July 2013), 127:1–127:14. https://doi.org/10/gbdg4r Google ScholarDigital Library
    53. Xin Sun, Kun Zhou, Stephen Lin, and Baining Guo. 2010. Line space gathering for single scattering in large scenes. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 29, 4 (July 2010), 54:1–54:8. https://doi.org/10/dzxvvr Google ScholarDigital Library
    54. Stanley Tzeng, Anjul Patney, Andrew Davidson, Mohamed S. Ebeida, Scott A. Mitchell, and John D. Owens. 2012. High-quality parallel depth-of-field using line samples. In Proceedings of High Performance Graphics. 23–31. https://doi.org/10/gfzncq Google ScholarDigital Library
    55. Eric Veach. 1997. Robust Monte Carlo methods for light transport simulation. Ph.D. Dissertation. Stanford, CA, USA. Google ScholarDigital Library
    56. Eric Veach and Leonidas Guibas. 1994. Bidirectional estimators for light transport. In Photorealistic Rendering Techniques (Proceedings of the Eurographics Workshop on Rendering. 147–162. https://doi.org/10/gfznbhGoogle Scholar
    57. Eric Veach and Leonidas Guibas. 1995. Optimally combining sampling techniques for Monte Carlo rendering. Annual Conference Series (Proceedings of SIGGRAPH) 29 (1995), 419–428. https://doi.org/10/d7b6n4 Google ScholarDigital Library
    58. Eric Veach and Leonidas Guibas. 1997. Metropolis light transport. Annual Conference Series (Proceedings of SIGGRAPH) 31 (1997), 65–76. https://doi.org/10/bkjqj4 Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: