“On the equilibrium of simplicial masonry structures” by Goes, Alliez, Owhadi and Desbrun
Conference:
Type(s):
Title:
- On the equilibrium of simplicial masonry structures
Session/Category Title: Building Structures & Layouts
Presenter(s)/Author(s):
Moderator(s):
Abstract:
We present a novel approach for the analysis and design of self-supporting simplicial masonry structures. A finite-dimensional formulation of their compressive stress field is derived, offering a new interpretation of thrust networks through numerical homogenization theory. We further leverage geometric properties of the resulting force diagram to identify a set of reduced coordinates characterizing the equilibrium of simplicial masonry. We finally derive computational form-finding tools that improve over previous work in efficiency, accuracy, and scalability.
References:
1. Alliez, P., Cohen-Steiner, D., Yvinec, M., and Desbrun, M. 2005. Variational tetrahedral meshing. ACM Trans. Graph. 24, 3 (July), 617–625. Google ScholarDigital Library
2. Angelillo, M., Babilio, E., and Fortunato, A. 2012. Singular stress fields for masonry-like vaults. Continuum Mechanics and Thermodynamics, 1–19.Google Scholar
3. Aurenhammer, F., Hoffmann, F., and Aronov, B. 1998. Minkowski-type theorems and least-squares clustering. Algorithmica 20, 1, 61–76.Google ScholarCross Ref
4. Block, P., and Lachauer, L. 2011. Closest-fit, compression-only solutions for free form shells. In IABSE/IASS London Symposium, Int. Assoc. Shell Spatial Structures.Google Scholar
5. Block, P., and Ochsendorf, J. 2007. Thrust network analysis: A new methodology for three-dimensional equilibrium. J. Int. Assoc. Shell and Spatial Structures 48, 3, 167–173.Google Scholar
6. Block, P. 2009. Thrust Network Analysis: Exploring Three-dimensional Equilibrium. PhD thesis, Department of Architecture, Massachusetts Institute of Technology.Google Scholar
7. CGAL, 2012. Computational Geometry Algorithms Library (release 4.1). http://www.cgal.org.Google Scholar
8. Desbrun, M., Kanso, E., and Tong, Y. 2007. Discrete differential forms for computational modeling. In Discrete Differential Geometry, A. Bobenko and P. Schröder, Eds. Springer.Google Scholar
9. Desbrun, M., Donaldson, R., and Owhadi, H. 2013. Modeling across scales: Discrete geometric structures in homogenization and inverse homogenization. In Multiscale analysis and nonlinear dynamics, M. Z. Pesenson, Ed., vol. 8 of Reviews of Nonlinear Dynamics and Complexity. Wiley.Google Scholar
10. Fisher, M., Schröder, P., Desbrun, M., and Hoppe, H. 2007. Design of tangent vector fields. In Proceedings of ACM SIGGRAPH. Google ScholarDigital Library
11. Fosdick, R., and Schuler, K. 2003. Generalized Airy stress functions. Meccanica 38, 5, 571–578.Google ScholarCross Ref
12. Fraternali, F., Angelillo, M., and Fortunato, A. 2002. A lumped stress method for plane elastic problems and the discrete-continuum approximation. International Journal of Solids and Structures 39, 6211–6240.Google ScholarCross Ref
13. Fraternali, F. 2010. A thrust network approach to the equilibrium problem of unreinforced masonry vaults via polyhedral stress functions. Mechanics Research Communications 37, 2, 198–204.Google ScholarCross Ref
14. Fraternali, F. 2011. A mixed lumped stress–displacement approach to the elastic problem of masonry walls. Mechanics Research Communications 38, 176–180.Google ScholarCross Ref
15. Giaquinta, M., and Giusti, E. 1985. Researches on the equilibrium of masonry structures. Archive for Rational Mechanics and Analysis 88, 359–392.Google ScholarCross Ref
16. Glickenstein, D., 2005. Geometric triangulations and discrete Laplacians on manifolds. arXiv.org:math/0508188.Google Scholar
17. Grady, L. J., and Polimeni, J. R. 2010. Discrete Calculus: Applied Analysis on Graphs for Computational Science. Springer. Google ScholarCross Ref
18. Green, A., and Zerna, W. 2002. Theoretical Elasticity. Dover.Google Scholar
19. Heyman, J. 1966. The stone skeleton. International Journal of Solids and Structures 2, 2, 249–279.Google ScholarCross Ref
20. Mercat, C. 2001. Discrete Riemann surfaces and the Ising model. Comm. Math. Phys. 218, 177–216.Google ScholarCross Ref
21. Mérigot, Q. 2011. A multiscale approach to optimal transport. Computer Graphics Forum 30, 5, 1583–1592.Google ScholarCross Ref
22. Mullen, P., Memari, P., de Goes, F., and Desbrun, M. 2011. HOT: Hodge-optimized triangulations. ACM Trans. Graph. 30, 4 (July), 103:1–103:12. Google ScholarDigital Library
23. O’Dwyer, D. 1999. Funicular analysis of masonry vaults. Computers & Structures 73, 1–5, 187–197.Google Scholar
24. Preparata, F. P., and Shamos, M. I. 1985. Computational Geometry: An Introduction. Springer-Verlag. Google ScholarCross Ref
25. Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. 2006. Designing quadrangulations with discrete harmonic forms. In Symposium on Geometry Processing, 201–210. Google ScholarDigital Library
26. Vouga, E., Höbinger, M., Wallner, J., and Pottmann, H. 2012. Design of self-supporting surfaces. ACM Trans. Graph. 31, 4, 87:1–87:11. Google ScholarDigital Library
27. Wächter, A., and Biegler, L. T. 2006. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106, 1, 25–57. Google ScholarDigital Library
28. Wardetzky, M., Mathur, S., Kälberer, F., and Grinspun, E. 2007. Discrete Laplace operators: no free lunch. In Symposium on Geometry Processing, 33–37. Google ScholarDigital Library
29. Whiting, E., Ochsendorf, J., and Durand, F. 2009. Procedural modeling of structurally-sound masonry buildings. ACM Transactions on Graphics 28, 5, 112:1–112:10. Google ScholarDigital Library
30. Whiting, E., Shin, H., Wang, R., Ochsendorf, J., and Durand, F. 2012. Structural optimization of 3D masonry buildings. ACM Transactions on Graphics 31, 6, 159:1–159:11. Google ScholarDigital Library
31. Wong, Y. W., and Pellegrino, S. 2006. Wrinkled membranes Part II: analytical models. Journal of Mechanics of Materials and Structures 1, 25–59.Google ScholarCross Ref
32. Zayer, R., Rossl, C., and Seidel, H.-P. 2005. Discrete tensorial quasi-harmonic maps. In Proceedings of Shape Modeling and Applications, 278–287. Google ScholarDigital Library