“On Filtering the Noise From the Random Parameters in Monte Carlo Rendering” by Sen and Darabi

  • ©Pradeep Sen and Soheil Darabi




    On Filtering the Noise From the Random Parameters in Monte Carlo Rendering



    Monte Carlo (MC) rendering systems can produce spectacular images but are plagued with noise at low sampling rates. In this work, we observe that this noise occurs in regions of the image where the sample values are a direct function of the random parameters used in the Monte Carlo system. Therefore, we propose a way to identify MC noise by estimating this functional relationship from a small number of input samples. To do this, we treat the rendering system as a black box and calculate the statistical dependency between the outputs and inputs of the system. We then use this information to reduce the importance of the sample values affected by MC noise when applying an image-space, cross-bilateral filter, which removes only the noise caused by the random parameters but preserves important scene detail. The process of using the functional relationships between sample values and the random parameter inputs to filter MC noise is called Random Parameter Filtering (RPF), and we demonstrate that it can produce images in a few minutes that are comparable to those rendered with a thousand times more samples. Furthermore, our algorithm is general because we do not assign any physical meaning to the random parameters, so it works for a wide range of Monte Carlo effects, including depth of field, area light sources, motion blur, and path-tracing. We present results for still images and animated sequences at low sampling rates that have higher quality than those produced with previous approaches.


    Arvo, J. and Kirk, D. 1990. Particle transport and image synthesis. In Proceedings of the ACM SIGGRAPH Annual Conference on Computer Graphics (SIGGRAPH’90). ACM Press, New York, 63–66. Google ScholarDigital Library
    Blender. 2011. Bilateral blur filter compositing node for denoising ray-traced ambient occlusion. http://www.blender.org/development/release-logs/blender-246/compositing-nodes/.Google Scholar
    Cook, R. L., Porter, T., and Carpenter, L. 1984. Distributed ray tracing. In Proceedings of the ACM SIGGRAPH Annual Conference on Computer Graphics (SIGGRAPH’84). ACM Press, New York, 137–145. Google ScholarDigital Library
    Cover, T. and Thomas, J. 2006. Elements of Information Theory 2nd Ed. John Wiley & Sons, Hoboken, NJ. Google ScholarDigital Library
    Dammertz, H., Sewtz, D., Hanika, J., and Lensch, H. P. 2010. Edge-Avoiding A-trous wavelet transform for fast global illumination filtering. In Proceedings of the High Performance Graphics Conference. 67–75. Google ScholarDigital Library
    DeCoro, C., Weyrich, T., and Rusinkiewicz, S. 2010. Density-Based outlier rejection in Monte Carlo rendering. In Proceedings of the Pacific Graphics Conference. Vol. 29.Google Scholar
    Deering, M., Winner, S., Schediwy, B., Duffy, C., and Hunt, N. 1988. The triangle processor and normal vector shader: A VLSI system for high performance graphics. In Proceedings of the ACM SIGGRAPH Annual Conference on Computer Graphics (SIGGRAPH’88). ACM Press, New York, 21–30. Google ScholarDigital Library
    Dutré, P., Bala, K., and Bekaert, P. 2006. Advanced Global Illumination. A. K. Peters. Google ScholarDigital Library
    Egan, K., Tseng, Y.-T., Holzschuch, N., Durand, F., and Ramamoorthi, R. 2009. Frequency analysis and sheared reconstruction for rendering motion blur. ACM Trans. Graph. 28, 3, 1–13. Google ScholarDigital Library
    Eisemann, E. and Durand, F. 2004. Flash photography enhancement via intrinsic relighting. ACM Trans. Graph. 23, 673–678. Google ScholarDigital Library
    Hachisuka, T., Jarosz, W., Weistroffer, R. P., Dale, K., Humphreys, G., Zwicker, M., and Jensen, H. W. 2008. Multi-Dimensional adaptive sampling and reconstruction for ray tracing. ACM Trans. Graph. 27, 3, 1–10. Google ScholarDigital Library
    Hastie, T., Tibshirani, R., and Friedman, J. H. 2001. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York.Google Scholar
    Jensen, H. W. 2001. Realistic Image Synthesis Using Photon Mapping. A. K. Peters. Google ScholarDigital Library
    Jensen, H. W. and Christensen, N. J. 1995. Optimizing path tracing using noise reduction techniques. In Proceedings of the Winter School of Computer Graphics Conference (WSCG’95). 134–142.Google Scholar
    Keller, A. 1998. Quasi-Monte Carlo methods for photorealistic image synthesis. Ph.D. thesis, Universität Kaiserslautern.Google Scholar
    Laine, S., Saransaari, H., Kontkanen, J., Lehtinen, J., and Aila, T. 2007. Incremental instant radiosity for real-time indirect illumination. In Proceedings of the Eurographics Symposium on Rendering. Eurographics Association, 277–286. Google ScholarDigital Library
    Lee, M. and Redner, R. 1990. A note of the use of nonlinear filtering in computer graphics. IEEE Comput. Graph. Appl. 10, 3, 23–29. Google ScholarDigital Library
    LuxRender. 2011. http://www.luxrender.net/.Google Scholar
    Mahalanobis, P. C. 1936. On the generalized distance in statistics. Proc. Nat. Inst. Sci. India 2, 1, 49–55.Google Scholar
    McCool, M. D. 1999. Anisotropic diffusion for Monte Carlo noise reduction. ACM Trans. Graph. 18, 2, 171–194. Google ScholarDigital Library
    Meyer, M. and Anderson, J. 2006. Statistical acceleration for animated global illumination. ACM Trans. Graph. 25, 3, 1075–1080. Google ScholarDigital Library
    Mitchell, D. P. 1991. Spectrally optimal sampling for distribution ray tracing. SIGGRAPH Comput. Graph. 25, 4, 157–164. Google ScholarDigital Library
    Overbeck, R. S., Donner, C., and Ramamoorthi, R. 2009. Adaptive wavelet rendering. ACM Trans. Graph. 28, 5, 1–12. Google ScholarDigital Library
    Peng, H. 2007. Matlab package for mutual information computation. http://www.mathworks.com/matlabcentral/fileexchange/14888.Google Scholar
    Perona, P. and Malik, J. 1990. Scale-Space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 7, 629–639. Google ScholarDigital Library
    Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M., Hoppe, H., and Toyama, K. 2004. Digital photography with flash and no-flash image pairs. ACM Trans. Graph. 23, 664–672. Google ScholarDigital Library
    Pharr, M. and Humphreys, G. 2010. Physically Based Rendering: From Theory to Implementation, 2nd Ed. Morgan Kaufmann Publishers, San Fransisco, CA. Google ScholarDigital Library
    Rushmeier, H. E. and Ward, G. J. 1994. Energy preserving non-linear filters. In Proceedings of the ACM SIGGRAPH Annual Conference on Computer Graphics (SIGGRAPH’94). ACM Press, New York, 131–138. Google ScholarDigital Library
    Saito, T. and Takahashi, T. 1990. Comprehensible rendering of 3-D shapes. In Proceedings of the ACM SIGGRAPH Annual Conference on Computer Graphics (SIGGRAPH’90). ACM Press, New York, 197–206. Google ScholarDigital Library
    Sbert, M., Feixas, M., Rigau, J., Viola, I., and Chover, M. 2007. Applications of information theory to computer graphics. In Proceedings of the Eurographics Conference. 625–704.Google Scholar
    Segovia, B., Iehl, J. C., Mitanchey, R., and Péroche, B. 2006. Non-Interleaved deferred shading of interleaved sample patterns. In Proceedings of the ACM Symposium on Graphics Hardware. ACM Press, New York, 53–60. Google ScholarDigital Library
    Sen, P. and Darabi, S. 2010. Compressive estimation for signal integration in rendering. Comput. Graph. Forum 29, 4, 1355–1363. Google ScholarDigital Library
    Sen, P. and Darabi, S. 2011a. Compressive rendering: A rendering application of compressed sensing. IEEE Trans. Vis. Comput. Graph. 17, 487–499. Google ScholarDigital Library
    Sen, P. and Darabi, S. 2011b. Implementation of Random Parameter Filtering. Tech. rep. EECE-TR-11-0004, University of New Mexico.Google Scholar
    Soler, C., Subr, K., Durand, F., Holzschuch, N., and Sillion, F. 2009. Fourier depth of field. ACM Trans. Graph. 28, 2, 1–12. Google ScholarDigital Library
    Tomasi, C. and Manduchi, R. 1998. Bilateral filtering for gray and color images. In Proceedings of the International Conference on Computer Vision (ICCV’98). IEEE, 839. Google ScholarDigital Library
    Walter, B., Arbree, A., Bala, K., and Greenberg, D. P. 2006. Multidimensional lightcuts. ACM Trans. Graph. 25, 3, 1081–1088. Google ScholarDigital Library
    Ward, G. J., Rubinstein, F. M., and Clear, R. D. 1988. A ray tracing solution for diffuse interreflection. In Proceedings of the ACM SIGGRAPH Annual Conference on Computer Graphics (SIGGRAPH’88). ACM Press, New York, 85–92. Google ScholarDigital Library
    Whitted, T. 1980. An improved illumination model for shaded display. Comm. ACM 33, 343–349. Google ScholarDigital Library
    Xu, R. and Pattanaik, S. N. 2005. A novel Monte Carlo noise reduction operator. IEEE Comput. Graph. Appl. 25, 31–35. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: