“NURBS with extraordinary points: high-degree, non-uniform, rational subdivision schemes” by Cashman, Augsdörfer, Dodgson and Sabin
Conference:
Type(s):
Title:
- NURBS with extraordinary points: high-degree, non-uniform, rational subdivision schemes
Presenter(s)/Author(s):
Abstract:
We present a subdivision framework that adds extraordinary vertices to NURBS of arbitrarily high degree. The surfaces can represent any odd degree NURBS patch exactly. Our rules handle non-uniform knot vectors, and are not restricted to midpoint knot insertion. In the absence of multiple knots at extraordinary points, the limit surfaces have bounded curvature.
References:
1. Augsdörfer, U. H., Dodgson, N. A., and Sabin, M. A. 2006. Tuning Subdivision by Minimising Gaussian Curvature Variation Near Extraordinary Vertices. Comp. Graph. Forum 25, 3, 263–272.Google ScholarCross Ref
2. Augsdörfer, U. H., Cashman, T. J., Dodgson, N. A., and Sabin, M. A. 2009. Numerical Checking of C1 for Arbitrary Degree Quadrilateral Subdivision Schemes. In 13th IMA Conference on the Mathematics of Surfaces, Springer. To appear. Google ScholarDigital Library
3. Barthe, L., and Kobbelt, L. 2004. Subdivision scheme tuning around extraordinary vertices. CAGD 21, 6, 561–583. Google ScholarDigital Library
4. Boehm, W. 1980. Inserting new knots into B-spline curves. Computer-Aided Design 12, 4, 199–201.Google ScholarCross Ref
5. Cashman, T. J., Dodgson, N. A., and Sabin, M. A. 2009. Selective knot insertion for symmetric, non-uniform refine and smooth B-spline subdivision. CAGD 26, 4, 472–479. Google ScholarDigital Library
6. Catmull, E., and Clark, J. 1978. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer-Aided Design 10, 6, 350–355.Google ScholarCross Ref
7. Cohen, E., Lyche, T., and Riesenfeld, R. 1980. Discrete B-splines and Subdivision Techniques in Computer-Aided Geometric Design and Computer Graphics. Computer Graphics and Image Processing 14, 2, 87–111.Google ScholarCross Ref
8. DeRose, T., Kass, M., and Truong, T. 1998. Subdivision surfaces in character animation. In Proc. SIGGRAPH 98, 85–94. Google ScholarDigital Library
9. Farin, G. 2001. Curves and Surfaces for CAGD: A Practical Guide, 5th ed. Morgan Kaufmann. Google ScholarDigital Library
10. Galil, Z., and Italiano, G. 1991. Data structures and algorithms for disjoint set union problems. ACM Computing Surveys 23, 3, 319–344. Google ScholarDigital Library
11. Ginkel, I., and Umlauf, G. 2006. Loop subdivision with curvature control. In Eurographics Symposium on Geom. Proc., Eurographics, K. Polthier and A. Sheffer, Eds., 163–171. Google ScholarDigital Library
12. Gonsor, D., and Neamtu, M. 2001. Subdivision Surfaces — Can they be Useful for Geometric Modeling Applications? Tech. Rep. 01–011, The Boeing Company.Google Scholar
13. Holt, F. 1996. Toward a curvature-continuous stationary subdivision algorithm. Zeitschrift für angewandte Mathematik und Mechanik 76, 423–424.Google Scholar
14. Karciauskas, K., Peters, J., and Reif, U. 2004. Shape characterization of subdivision surfaces-case studies. CAGD 21, 6, 601–614. Google ScholarDigital Library
15. Lane, J. M., and Riesenfeld, R. F. 1980. A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces. IEEE Trans. PAMI 2, 1, 35–46.Google ScholarDigital Library
16. Levin, A. 2006. Modified subdivision surfaces with continuous curvature. ACM Trans. Graph. 25, 3, 1035–1040. Google ScholarDigital Library
17. Loop, C. 2002. Bounded curvature triangle mesh subdivision with the convex hull property. The Visual Computer 18, 316–325.Google ScholarCross Ref
18. Ma, W. 2005. Subdivision surfaces for CAD—an overview. Computer-Aided Design 37, 7, 693–709. Google ScholarDigital Library
19. Müller, K., Reusche, L., and Fellner, D. 2006. Extended subdivision surfaces: Building a bridge between NURBS and Catmull-Clark surfaces. ACM Trans. Graph. 25, 2, 268–292. Google ScholarDigital Library
20. Peters, J., and Reif, U. 2008. Subdivision Surfaces. Springer. Google ScholarDigital Library
21. Prautzsch, H. 1997. Freeform splines. CAGD 14, 3, 201–206. Google ScholarDigital Library
22. Prautzsch, H. 1998. Smoothness of subdivision surfaces at extraordinary points. Adv. in Comp. Math. 9, 3, 377–389.Google ScholarCross Ref
23. Ramshaw, L. 1989. Blossoms are polar forms. CAGD 6, 4, 323–358. Google ScholarDigital Library
24. Reif, U. 1996. A Degree Estimate for Subdivision Surfaces of Higher Regularity. Proc. Amer. Math. Soc. 124, 7, 2167–2174.Google ScholarCross Ref
25. Reif, U. 1998. TURBS—Topologically Unrestricted Rational B-Splines. Constructive Approximation 14, 1, 57–77.Google ScholarCross Ref
26. Sabin, M. A., Dodgson, N. A., Hassan, M. F., and Ivrissimtzis, I. P. 2003. Curvature behaviours at extraordinary points of subdivision surfaces. Computer-Aided Design 35, 11, 1047–1051.Google ScholarCross Ref
27. Sabin, M. 1991. Cubic recursive division with bounded curvature. In Curves and surfaces, Academic Press, 411–414. Google ScholarDigital Library
28. Schaefer, S., and Goldman, R. 2009. Non-uniform Subdivision for B-splines of Arbitrary Degree. CAGD 26, 1, 75–81. Google ScholarDigital Library
29. Sederberg, T. W., Zheng, J., Sewell, D., and Sabin, M. 1998. Non-Uniform Recursive Subdivision Surfaces. In Proc. SIGGRAPH 98, 387–394. Google ScholarDigital Library
30. Sederberg, T. W., Zheng, J., Bakenov, A., and Nasri, A. 2003. T-splines and T-NURCCs. ACM Trans. Graph. 22, 3, 477–484. Google ScholarDigital Library
31. Stam, J. 1998. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values. In Proc. SIGGRAPH 98, 395–404. Google ScholarDigital Library
32. Stam, J. 2001. On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree. CAGD 18, 5, 383–396. Google ScholarDigital Library
33. Warren, J., and Weimer, H. 2001. Subdivision Methods for Geometric Design. Morgan Kaufmann. Google ScholarDigital Library
34. Zorin, D., and Schröder, P. 2001. A unified framework for primal/dual quadrilateral subdivision schemes. CAGD 18, 5, 429–454. Google ScholarDigital Library