“Near-exhaustive precomputation of secondary cloth effects” by Kim, Koh, Narain, Fatahalian, Treuille, et al. …

  • ©Doyub Kim, Woojong Koh, Rahul Narain, Kayvon Fatahalian, Adrien Treuille, and James F. O'Brien




    Near-exhaustive precomputation of secondary cloth effects

Session/Category Title: Data-Driven Animation




    The central argument against data-driven methods in computer graphics rests on the curse of dimensionality: it is intractable to precompute “everything” about a complex space. In this paper, we challenge that assumption by using several thousand CPU-hours to perform a massive exploration of the space of secondary clothing effects on a character animated through a large motion graph. Our system continually explores the phase space of cloth dynamics, incrementally constructing a secondary cloth motion graph that captures the dynamics of the system. We find that it is possible to sample the dynamical space to a low visual error tolerance and that secondary motion graphs containing tens of gigabytes of raw mesh data can be compressed down to only tens of megabytes. These results allow us to capture the effect of high-resolution, off-line cloth simulation for a rich space of character motion and deliver it efficiently as part of an interactive application.


    1. An, S. S., Kim, T., and James, D. L. 2008. Optimizing cubature for efficient integration of subspace deformations. ACM Transactions on Graphics 27, 5 (Dec.), 165:1–165:10. Google ScholarDigital Library
    2. Arikan, O., and Forsyth, D. A. 2002. Interactive motion generation from examples. In Proc. of ACM SIGGRAPH ’02, 483–490. Google ScholarDigital Library
    3. Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. In Proc. of SIGGRAPH ’98, 43–54. Google ScholarDigital Library
    4. Barbič, J., and James, D. 2005. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Transactions on Graphics 24, 3 (Aug.), 982–990. Google ScholarDigital Library
    5. Barbič, J., and Popović, J. 2008. Real-time control of physically based simulations using gentle forces. ACM Transactions on Graphics 27, 5 (Dec.), 163:1–163:10. Google ScholarDigital Library
    6. Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. In Proc. of ACM SIGGRAPH ’02, 594–603. Google ScholarDigital Library
    7. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Proc. ’03 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 28–36. Google ScholarDigital Library
    8. Choi, K.-J., and Ko, H.-S. 2002. Stable but responsive cloth. In Proc. of ACM SIGGRAPH ’02, 604–611. Google ScholarDigital Library
    9. de Aguiar, E., Sigal, L., Treuille, A., and Hodgins, J. K. 2010. Stable spaces for real-time clothing. ACM Trans. Graph. 29 (July), 106:1–106:9. Google ScholarDigital Library
    10. Feng, W.-w., Yu, Y., and Kim, B.-u. 2010. A deformation transformer for real-time cloth animation. ACM Transactions on Graphics 1, 212, 1–9. Google ScholarDigital Library
    11. Guan, P., Sigal, L., Reznitskaya, V., and Hodgins, J. K. 2012. Multi-linear data-driven dynamic hair model with efficient hair-body collision handling. Proc. ’12 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 295–304. Google ScholarDigital Library
    12. Halevy, A., Norvig, P., and Pereira, F. 2009. The unreasonable effectiveness of data. IEEE Intelligent Systems 24, 2 (Mar.), 8–12. Google ScholarDigital Library
    13. Hilsmann, A., and Eisert, P. 2012. Image-based animation of clothes. Eurographics, 1–4.Google Scholar
    14. James, D. L., and Fatahalian, K. 2003. Precomputing interactive dynamic deformable scenes. Tech. Rep. CMU-RI-TR-03-33, Carnegie Mellon University Robotics Institute.Google Scholar
    15. James, D. L., and Pai, D. K. 2002. DyRT: dynamic response textures for real time deformation simulation with graphics hardware. ACM Trans. Graph. 21, 3 (July), 582–585. Google ScholarDigital Library
    16. Kaldor, J. M., James, D. L., and Marschner, S. 2010. Efficient yarn-based cloth with adaptive contact linearization. ACM Transactions on Graphics 29, 4 (July), 1. Google ScholarDigital Library
    17. Kavan, L., Gerszewski, D., Bargteil, A. W., and Sloan, P.-P. 2011. Physics-inspired upsampling for cloth simulation in games. ACM Trans. Graph. 30, 4 (July). Google ScholarDigital Library
    18. Kovar, L., Gleicher, M., and Pighin, F. 2002. Motion graphs. In Proc. of ACM SIGGRAPH ’02, 473–482. Google ScholarDigital Library
    19. Miguel, E., Bradley, D., Thomaszewski, B., Bickel, B., Matusik, W., Otaduy, M. A., and Marschner, S. 2012. Data-driven estimation of cloth simulation models. Eurographics 31, 2. Google ScholarDigital Library
    20. Müller, M., and Chentanez, N. 2010. Wrinkle meshes. In Proc. ’10 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 85–92. Google ScholarDigital Library
    21. Müller, M., Röder, T., Clausen, M., Eberhardt, B., Krüger, B., and Weber, A. 2007. Documentation mocap database HDM05. Tech. Rep. CG-2007-2, Universität Bonn, June.Google Scholar
    22. Narain, R., Samii, A., and O’Brien, J. F. 2012. Adaptive anisotropic remeshing for cloth simulation. ACM Transactions on Graphics 31, 6 (Nov.), 147:1–10. Google ScholarDigital Library
    23. Nealen, A., Mller, M., Keiser, R., Boxerman, E., and Carlson, M. 2006. Physically based deformable models in computer graphics. Computer Graphics Forum 25, 4, 809–836.Google ScholarCross Ref
    24. Popa, T., Zhou, Q., Bradley, D., Kraevoy, V., Fu, H., Sheffer, A., and Heidrich, W. 2009. Wrinkling captured garments using space-time data-driven deformation. Computer Graphics 28, 2.Google Scholar
    25. Rohmer, D., Popa, T., Cani, M.-p., Hahmann, S., and Sheffer, A. 2010. Animation wrinkling: Augmenting coarse cloth simulations with realistic-looking wrinkles. ACM Transactions on Graphics 29, 6, 1–8. Google ScholarDigital Library
    26. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Proc. of ACM SIGGRAPH ’87, 205–214. Google ScholarDigital Library
    27. Thomaszewski, B., Wacker, M., Straer, W., Lyard, E., Luible, C., Volino, P., Kasap, M., Muggeo, V., and Magnenat-Thalmann, N. 2007. Advanced topics in virtual garment simulation. In Eurographics 2007 – Tutorials, 795–855.Google Scholar
    28. Treuille, A., Lewis, A., and Popović, Z. 2006. Model reduction for real-time fluids. ACM Transactions on Graphics 25, 3 (July), 826–834. Google ScholarDigital Library
    29. Twigg, C. D., and James, D. L. 2007. Many-worlds browsing for control of multibody dynamics. ACM Transactions on Graphics 26, 3 (July), 14:1–14:8. Google ScholarDigital Library
    30. Twigg, C. D., and James, D. L. 2008. Backward steps in rigid body simulation. ACM Transactions on Graphics 27, 3 (Aug.), 25:1–25:10. Google ScholarDigital Library
    31. Wang, H., Hecht, F., Ramamoorthi, R., and O’Brien, J. F. 2010. Example-based wrinkle synthesis for clothing animation. In Proc. of ACM SIGGRAPH ’10, 107:1–8. Google ScholarDigital Library
    32. Wang, H., O’Brien, J. F., and Ramamoorthi, R. 2011. Data-driven elastic models for cloth: modeling and measurement. ACM Transactions on Graphics 30, 4. Google ScholarDigital Library
    33. Wicke, M., Stanton, M., and Treuille, A. 2009. Modular bases for fluid dynamics. ACM Transactions on Graphics 28, 3 (July), 39:1–39:8. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: