“Musculotendon simulation for hand animation” by Sueda, Kaufman and Pai

  • ©Shinjiro Sueda, Andrew Kaufman, and Dinesh K. Pai

Conference:


Type:


Title:

    Musculotendon simulation for hand animation

Presenter(s)/Author(s):



Abstract:


    We describe an automatic technique for generating the motion of tendons and muscles under the skin of a traditionally animated character. This is achieved by integrating the traditional animation pipeline with a novel biomechanical simulator capable of dynamic simulation with complex routing constraints on muscles and tendons. We also describe an algorithm for computing the activation levels of muscles required to track the input animation. We demonstrate the results with several animations of the human hand.

References:


    1. Albrecht, I., Haber, J., and Seidel, H.-P. 2003. Construction and animation of anatomically based human hand models. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 98–109. Google ScholarDigital Library
    2. Aubel, A., and Thalmann, D. 2001. Interactive modeling of the human musculature. In Proceedings of Computer Animation 2001, 167–255.Google Scholar
    3. Baumgarte, J. 1972. Stabilization of constraints and integrals of motion in dynamical systems. Computer Methods in Applied Mechanics and Engineering 1 (June), 1–16.Google ScholarCross Ref
    4. Bertails, F., Audoly, B., Cani, M.-P., Querleux, B., Leroy, F., and Lévque, J.-L. 2006. Super-helices for predicting the dynamics of natural hair. ACM Trans. Graph. (Proc. SIGGRAPH) 25, 3, 1180–1187. Google ScholarDigital Library
    5. Blemker, S. S., and Delp, S. L. 2005. Three-dimensional representation of complex muscle architectures and geometries. Annals of Biomedical Engineering 33, 5 (May), 661–673.Google Scholar
    6. Boyd, S., and Vandenberghe, L. 2004. Convex Optimization. Cambridge University Press. Google ScholarDigital Library
    7. Chao, E. Y. S. 2003. Graphic-based musculoskeletal model for biomechanical analyses and animation. Medical Engineering & Physics 25, 3 (April), 201–212.Google Scholar
    8. Coleman, P., and Singh, K. 2006. Cords: Geometric curve primitives for modeling contact. IEEE Computer Graphics and Applications 26, 3, 72–79. Google ScholarDigital Library
    9. Davis, T. A. 2006. Direct Methods for Sparse Linear Systems. SIAM Book Series on the Fundamentals of Algorithms. SIAM. Google ScholarDigital Library
    10. Delp, S. L., and Loan, J. P. 1995. A graphics-based software system to develop and analyze models of musculoskeletal structures. Comput. Biol. Med. 25, 1, 21–34.Google ScholarCross Ref
    11. Delp, S. L., and Loan, J. P. 2000. A computational framework for simulating and analyzing human and animal movement. Computing in Science & Engineering 2, 5, 46–55. Google ScholarCross Ref
    12. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 2001. Composable controllers for physics-based character animation. In Proceedings of ACM SIGGRAPH 2001, 251–260. Google ScholarDigital Library
    13. Garner, B., and Pandy, M. 2000. The obstacle-set method for representing muscle paths in musculoskeletal models. Comput Methods Biomech Biomed Engin 3, 1, 1–30.Google ScholarCross Ref
    14. Grinspun, E., Hirani, A. N., Desbrun, M., and Schrćder, P. 2003. Discrete shells. In Proceedings of 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 62–67. Google ScholarDigital Library
    15. Hairer, E., and Wanner, G. 2004. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, 3 ed., vol. 2. Springer. Google ScholarDigital Library
    16. Hogfors, C., Karlsson, D., and Peterson, B. 1995. Structure and internal consistency of a shoulder model. Journal of Biomechanics 28, 7 (July), 767–777.Google ScholarCross Ref
    17. Kry, P. G., and Pai, D. K. 2006. Interaction capture and synthesis. ACM Trans. Graph. (Proc. SIGGRAPH) 25, 3, 872–880. Google ScholarDigital Library
    18. Lee, S.-H., and Terzopoulos, D. 2006. Heads up!: biomechanical modeling and neuromuscular control of the neck. ACM Trans. Graph. (Proc. SIGGRAPH) 25, 3, 1188–1198. Google ScholarDigital Library
    19. Lee, Y., Terzopoulos, D., and Walters, K. 1995. Realistic modeling for facial animation. In Proceedings of ACM SIGGRAPH 1995, 55–62. Google ScholarDigital Library
    20. Lenoir, J., Grisoni, L., Meseure, P., Rémion, Y., and Chaillou, C. 2004. Smooth constraints for spline variational modeling. In Proceedings of GRAPHITE 2004, 58–64. Google ScholarDigital Library
    21. Maural, W., Thalmann, D., Hoffmeyer, P., Beylot, P., Gingins, P., Kalra, P., and Thalmann, N. M. 1996. A biomechanical musculoskeletal model of human upper limb for dynamic simulation. In Proceedings of the 1996 Eurographics Workshop on Computer Animation and Simulation, 121–136. Google ScholarDigital Library
    22. Moore, K. L., and Dalley, A. F. 1999. Clinically oriented anatomy, 4 ed. Lippincott Williams & Wilkins.Google Scholar
    23. Murray, R. M., Li, Z., and Sastry, S. S. 1994. A Mathematical Introduction to Robotic Manipulation. CRC Press. Google ScholarDigital Library
    24. Neff, M., and Fiume, E. 2002. Modeling tension and relaxation for computer animation. In Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 81–88. Google ScholarDigital Library
    25. Ng-Thow-Hing, V. 2001. Anatomically-based models for physical and geometric reconstruction of humans and other animals. PhD thesis, The University of Toronto. Google ScholarDigital Library
    26. Pai, D. K. 2002. Strands: Interactive simulation of thin solids using Cosserat models. In Proceedings of Eurographics 2002, 347–352.Google Scholar
    27. Pandy, M. G. 2001. Computer modeling and simulation of human movement. Annual Review of Biomedical Engineering, 3, 245–273.Google ScholarCross Ref
    28. Pollard, N. S., and Zordan, V. B. 2005. Physically based grasping control from example. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 311–318. Google ScholarDigital Library
    29. Qin, H., and Terzopoulos, D. 1996. D-NURBS: A Physics-Based Framework for Geometric Design. IEEE Transactions on Visualization and Computer Graphics 2, 1, 85–96. Google ScholarDigital Library
    30. Rasmussen, J., Damsgaard, M., Christensen, S. T., and de Zee, M. 2005. Anybody – decoding the human musculoskeletal system by computational mechanics. Konferanse i beregningsorientert mekanikk (invited paper).Google Scholar
    31. Remion, Y., Nourrit, J., and Gillard, D. 1999. Dynamic animation of spline like objects. In Proceedings of the 1999 WSCG Conference, 426–432.Google Scholar
    32. Scheepers, F., Parent, R. E., Carlson, W. E., and May, S. F. 1997. Anatomy-based modeling of the human musculature. In Proceedings of ACM SIGGRAPH 1997, 163–172. Google ScholarDigital Library
    33. Shao, W., and Ng-Thow-Hing, V. 2003. A general joint component framework for realistic articulation in human characters. In Proceedings of the 2003 Symposium on Interactive 3D Graphics, 11–18. Google ScholarDigital Library
    34. Sifakis, E., Neverov, I., and Fedkiw, R. 2005. Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 3, 417–425. Google ScholarDigital Library
    35. Spillmann, J., and Teschner, M. 2007. CoRdE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects. In Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 63–72. Google ScholarDigital Library
    36. Teran, J., Blemker, S., Hing, V. N. T., and Fedkiw, R. 2003. Finite volume methods for the simulation of skeletal muscle. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 68–74. Google ScholarDigital Library
    37. Teran, J., Sifakis, E., Blemker, S. S., Ng-Thow-Hing, V., Lau, C., and Fedkiw, R. 2005. Creating and simulating skeletal muscle from the visible human data set. IEEE Transactions on Visualization and Computer Graphics 11, 3, 317–328. Google ScholarDigital Library
    38. Thelen, D. G., and Anderson, F. C. 2006. Using computed muscle control to generate forward dynamic simulations of human walking from experimental data. Journal of Biomechanics, 39, 1107–1115.Google ScholarCross Ref
    39. Thelen, D. G., Anderson, F. C., and Delp, S. L. 2002. Generating dynamic simulations of movement using computed muscle control. Journal of Biomechanics, 36, 321–328.Google ScholarCross Ref
    40. Tsang, W., Singh, K., and Fiume, E. 2005. Helping hand: an anatomically accurate inverse dynamics solution for unconstrained hand motion. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 319–328. Google ScholarDigital Library
    41. Waters, K. 1987. A muscle model for animation threedimensional facial expression. In Proceedings of ACM SIGGRAPH 1987, 17–24. Google ScholarDigital Library
    42. Weinstein, R., Guendelman, E., and Fedkiw, R. 2008. Impulse-based control of joints and muscles. IEEE Transactions on Visualization and Computer Graphics 14, 1, 37–46. Google ScholarDigital Library
    43. Wilhelms, J., and Gelder, A. V. 1997. Anatomically based modeling. In Proceedings of ACM SIGGRAPH 1997, 173–180. Google ScholarDigital Library
    44. Wu, F. T. H., Ng-Thow-Hing, V., Singh, K., Agur, A. M., and McKee, N. H. 2007. Computational representation of the aponeuroses as nurbs surfaces in 3d musculoskeletal models. Comput. Methods Prog. Biomed. 88, 2, 112–122. Google ScholarDigital Library
    45. Yin, K., Cline, M. B., and Pai, D. K. 2003. Motion perturbation based on simple neuromotor control models. In Proceedings of Pacific Graphics 2003, 445–449. Google ScholarDigital Library
    46. Zajac, F. 1989. Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit Rev Biomed Eng. 17, 4, 359–411.Google Scholar
    47. Zhu, Q.-h., Chen, Y., and Kaufman, A. 1998. Real-time biomechanically-based muscle volume deformation using fem. Computer Graphics Forum 17, 3, 275–284.Google ScholarCross Ref
    48. Zordan, V. B., Celly, B., Chiu, B., and DiLorenzo, P. C. 2004. Breathe easy: model and control of simulated respiration for animation. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 29–37. Google ScholarDigital Library
    49. Zordan, V. B., Majkowska, A., Chiu, B., and Fast, M. 2005. Dynamic response for motion capture animation. ACM Trans. Graph. (Proc. SIGGRAPH) 24, 3, 697–701. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: