“Multidimensional lightcuts” by Walter, Arbree, Bala and Greenberg

  • ©Bruce J. Walter, Adam Arbree, Kavita Bala, and Donald P. Greenberg




    Multidimensional lightcuts



    Multidimensional lightcuts is a new scalable method for efficiently rendering rich visual effects such as motion blur, participating media, depth of field, and spatial anti-aliasing in complex scenes. It introduces a flexible, general rendering framework that unifies the handling of such effects by discretizing the integrals into large sets of gather and light points and adaptively approximating the sum of all possible gather-light pair interactions.We create an implicit hierarchy, the product graph, over the gather-light pairs to rapidly and accurately approximate the contribution from hundreds of millions of pairs per pixel while only evaluating a tiny fraction (e.g., 200–1,000). We build upon the techniques of the prior Lightcuts method for complex illumination at a point, however, by considering the complete pixel integrals, we achieve much greater efficiency and scalability.Our example results demonstrate efficient handling of volume scattering, camera focus, and motion of lights, cameras, and geometry. For example, enabling high quality motion blur with 256x temporal sampling requires only a 6.7x increase in shading cost in a scene with complex moving geometry, materials, and illumination.


    1. Bekaert, P., Sbert, M., and Halton, J. 2002. Accelerating path tracing by re-using paths. In EGRW ’02, 125–134. Google ScholarDigital Library
    2. Burke, D., Ghosh, A., and Heidrich, W. 2005. Bidirectional importance sampling for direct illumination. In EGSR ’05, 147–156. Google ScholarDigital Library
    3. Cammarano, M., and Jensen, H. 2002. Time dependent photon mapping. In EGRW ’02, 135–144. Google ScholarDigital Library
    4. Catmull, E. 1984. An analytic visible surface algorithm for independent pixel processing. In SIGGRAPH ’84, 109–115. Google ScholarDigital Library
    5. Cerezo, E., Perez-Cazorla, F., Pueyo, X., Seron, F., and Sillion, F. 2005. A survey on participating media rendering techniques. The Visual Computer 21, 5, 303–328.Google ScholarDigital Library
    6. Clarberg, P., Jarosz, W., Akenine-Möller, T., and Jensen, H. W. 2005. Wavelet importance sampling: efficiently evaluating products of complex functions. ACM Transactions on Graphics 24, 3, 1166–1175. Google ScholarDigital Library
    7. Cline, D., Talbot, J., and Egbert, P. 2005. Energy redistribution path tracing. ACM Transactions on Graphics 24, 3, 1186–1195. Google ScholarDigital Library
    8. Cook, R. L., Porter, T., and Carpenter, L. 1984. Distributed ray tracing. In SIGGRAPH ’84, 137–145. Google ScholarDigital Library
    9. Cook, R. L., Carpenter, L., and Catmull, E. 1987. The Reyes image rendering architecture. In SIGGRAPH ’87, 95–102. Google ScholarDigital Library
    10. Damez, C., Dmitriev, K., and Myszkowski, K. 2003. State of the art in global illumination for interactive applications and high-quality animations antialiasing. Computer Graphics Forum 22, 1, 55–77.Google ScholarCross Ref
    11. Debevec, P. 2002. Image-based lighting. IEEE Computer Graphics & Applications 22, 2 (March-April), 26–34. Google ScholarDigital Library
    12. Havran, V., Damez, C., Myszkowski, K., and Seidel, H.-P. 2003. An efficient spatio-temporal architecture for animation rendering. In EGSR ’03, 106–117. Google ScholarDigital Library
    13. Irawan, P., Ferwerda, J. A., and Marschner, S. R. 2005. Perceptually based tone mapping of high dynamic range image streams. In EGSR ’05, 231–242. Google ScholarDigital Library
    14. Jensen, H. W., and Christensen, P. H. 1998. Efficient simulation of light transport in scenes with participating media using photon maps. In SIGGRAPH ’98, 311–320. Google ScholarDigital Library
    15. Keller, A. 1997. Instant radiosity. In SIGGRAPH ’97, 49–56. Google ScholarDigital Library
    16. Korein, J., and Badler, N. 1983. Temporal anti-aliasing in computer generated animation. In SIGGRAPH ’83, 377–388. Google ScholarDigital Library
    17. Lafortune, E. P., and Willems, Y. D. 1993. Bi-directional path tracing. In Compugraphics ’93, 145–153.Google Scholar
    18. Lawrence, J., Rusinkiewicz, S., and Ramamoorthi, R. 2004. Efficient BRDF importance sampling using a factored representation. ACM Trans. Graph. 23, 3, 496–505. Google ScholarDigital Library
    19. Lawrence, J., Rusinkiewicz, S., and Ramamoorthi, R. 2005. Adaptive numerical cumulative distribution functions for efficient importance sampling. In EGSR ’05, 11–20. Google ScholarDigital Library
    20. Max, N. L., and Lerner, D. M. 1985. A two-and-a-half-d motion-blur algorithm. In SIGGRAPH ’85, 85–93. Google ScholarDigital Library
    21. Mitchell, D. P. 1991. Spectrally optimal sampling for distributed ray tracing. In SIGGRAPH ’91, 157–164. Google ScholarDigital Library
    22. Myszkowski, K., Rokita, P., and Tawara, T. 2000. Perception-based fast rendering and antialiasing of walkthrough sequences. IEEE Transactions on Visualization and Computer Graphics 6, 4, 360–379. Google ScholarDigital Library
    23. Myszkowski, K., Tawara, T., Akamine, H., and Seidel, H.-P. 2001. Perception-guided global illumination solution for animation rendering. In SIGGRAPH ’01, 221–230. Google ScholarDigital Library
    24. Pauly, M., Kollig, T., and Keller, A. 2000. Metropolis light transport for participating media. In EGRW ’02, 11–22. Google ScholarDigital Library
    25. Premoze, S., Ashikhmin, M., Ramamoorthi, R., and Nayar, S. 2004. Practical rendering of multiple scattering effects in participating media. In EGSR ’04, 52–63. Google ScholarDigital Library
    26. Sun, B., Ramamoorthi, R., Narasimhan, S. G., and Nayar, S. K. 2005. A practical analytic single scattering model for real time rendering. ACM Transactions on Graphics 24, 3, 1040–1049. Google ScholarDigital Library
    27. Sung, K., Pearce, A., and Wang, C. 2002. Spatial-temporal antialiasing. IEEE Transactions on Visualization and Computer Graphics 8, 2, 144–153. Google ScholarDigital Library
    28. Talbot, J., Cline, D., and Egbert, P. 2005. Importance resampling for global illumination. In EGSR ’05, 139–146. Google ScholarDigital Library
    29. Tawara, T., Myszkowski, K., and Seidel, H.-P. 2004. Exploiting temporal coherence in final gathering for dynamic scenes. In Proceedings of the Computer Graphics International, 110–119. Google ScholarDigital Library
    30. Veach, E., and Guibas, L. J. 1997. Metropolis light transport. In SIGGRAPH ’97, 65–76. Google ScholarDigital Library
    31. Walter, B., Fernandez, S., Arbree, A., Bala, K., Donikian, M., and Greenberg, D. P. 2005. Lightcuts: A scalable approach to illumination. ACM Transactions on Graphics 24, 3 (Aug.), 1098–1107. Google ScholarDigital Library
    32. Wloka, M. M., and Zeleznik, R. C. 1996. Interactive real-time motion blur. The Visual Computer 12, 6, 283–295.Google ScholarCross Ref

ACM Digital Library Publication:

Overview Page: