“Multi-scale rendering of scratched materials using a structured SV-BRDF model”

  • ©Boris Raymond, Gael Guennebaud, and Pascal Barla




    Multi-scale rendering of scratched materials using a structured SV-BRDF model





    We introduce a Spatially-Varying BRDF model tailored to the multi-scale rendering of scratched materials such as metals, plastics or finished woods. Our approach takes advantage of the regular structure of scratch distributions to achieve high performance without compromising visual quality. We provide users with controls over the profile, micro-BRDF, density and orientation of scratches, while updating our material model at interactive rates. The BRDF for a single scratch is simulated using an optimized 2D ray-tracer and compactly stored in a three-component 2D texture. In contrast to existing models, our approach takes into account all interreflections inside a scratch, including Fresnel effects. At render time, the SV-BRDF for the scratch distribution under a pixel or ray footprint is obtained by linear combination of individual scratch BRDFs. We show how to evaluate it using both importance and light sampling, in direct and global illumination settings.


    1. Ashikhmin, M., and Shirley, P. 2000. An Anisotropic Phong BRDF Model. Journal of Graphics Tools 5, 1, 25–32. Google ScholarDigital Library
    2. Bosch, C., and Patow, G. 2010. Real-time path-based surface detail. Computers & Graphics 34, 4 (Aug.), 430–440. Google ScholarDigital Library
    3. Bosch, C., Pueyo, X., Merillou, S., and Ghazanfarpour, D. 2004. A Physically Based Model for Rendering Realistic Scratches. Computer Graphics Forum 23, 3 (Sept.), 361–370.Google ScholarCross Ref
    4. Bruneton, E. 2010. Realtime realistic ocean lighting using seamless transitions from geometry to brdf. Computer Graphics Forum 29, 2.Google ScholarCross Ref
    5. Dong, Z., Walter, B., Marschner, S., and Greenberg, D. P. 2015. Predicting appearance from measured microgeometry of metal surfaces. ACM Trans. Graph. 35, 1, 9:1–9:13. Google ScholarDigital Library
    6. Dupuy, J., Heitz, E., Iehl, J., and Poulin, P. 2013. Linear efficient antialiased displacement and reflectance mapping. ACM Transactions on . . . 6, 211, 1–11. Google ScholarDigital Library
    7. Filip, J., Vavra, R., and Havlicek, M. 2014. Effective acquisition of dense anisotropic brdf. In Proceedings of the 22th International Conference on Pattern Recognition, ICPR 2014, 2047–2052. Google ScholarDigital Library
    8. Han, C., Sun, B., Ramamoorthi, R., and Grinspun, E. 2007. Frequency domain normal map filtering. ACM Trans. Graph. 26, 3 (July). Google ScholarDigital Library
    9. Irawan, P., and Marschner, S. 2012. Specular reflection from woven cloth. ACM Transactions on Graphics 31, 1 (Jan.), 1–20. Google ScholarDigital Library
    10. Jakob, W., D’Eon, E., Jakob, O., and Marschner, S. 2014. A comprehensive framework for rendering layered materials. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2014) 33, 4. Google ScholarDigital Library
    11. Jakob, W., Hašan, M., Yan, L.-Q., Lawrence, J., Ramamoorthi, R., and Marschner, S. 2014. Discrete stochastic microfacet models. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2014) 33, 4. Google ScholarDigital Library
    12. Kajiya, J. T., and Kay, T. L. 1989. Rendering fur with three dimensional textures. SIGGRAPH Comput. Graph. 23, 3 (July), 271–280. Google ScholarDigital Library
    13. Lazanyi, I., and Szirmay-Kalos, L. 2005. Fresnel Term Approximations for Metals. In WSCG’2005 – 13-th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision’2005, 77–80.Google Scholar
    14. Ma, W.-C., Chao, S.-H., Tseng, Y.-T., Chuang, Y.-Y., Chang, C.-F., Chen, B.-Y., and Ouhyoung, M. 2005. Level-of-detail representation of bidirectional texture functions for real-time rendering. In Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games, ACM, New York, NY, USA, I3D ’05, 187–194. Google ScholarDigital Library
    15. Mérillou, S., Dischler, J.-M., and Ghazanfarpour, D. 2001. Surface scratches: measuring, modeling and rendering. The Visual Computer 17, 1, 30–45.Google ScholarCross Ref
    16. Olano, M., and Baker, D. 2010. Lean mapping. In Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, ACM, New York, NY, USA, I3D ’10, 181–188. Google ScholarDigital Library
    17. Pont, S. C., and Koenderink, J. J. 2002. Bidirectional reflectance distribution function of specular surfaces with hemispherical pits. J. Opt. Soc. Am. A 19, 12 (Dec), 2456–2466.Google ScholarCross Ref
    18. Pont, S. C., and Koenderink, J. J. 2003. Split off-specular reflection and surface scattering from woven materials. Appl. Opt. 42, 8 (Mar), 1526–1533.Google ScholarCross Ref
    19. Poulin, P., and Fournier, A. 1990. A model for anisotropic reflection. SIGGRAPH Comput. Graph. 24, 4 (Sept.), 273–282. Google ScholarDigital Library
    20. Sadeghi, I., Bisker, O., De Deken, J., and Jensen, H. W. 2013. A practical microcylinder appearance model for cloth rendering. ACM Trans. Graph. 32, 2 (Apr.), 14:1–14:12. Google ScholarDigital Library
    21. Schlick, C. 1994. An inexpensive brdf model for physically-based rendering. Computer Graphics Forum 13, 233–246.Google ScholarCross Ref
    22. Tan, P., Lin, S., Quan, L., Guo, B., and Shum, H.-Y. 2005. Multiresolution reflectance filtering. In Proceedings of the Sixteenth Eurographics Conference on Rendering Techniques, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, EGSR ’05, 111–116. Google ScholarDigital Library
    23. Tan, P., Lin, S., Quan, L., Guo, B., and Shum, H. 2008. Filtering and rendering of resolution-dependent reflectance models. IEEE Transactions on Visualization and Computer Graphics 14, 2 (Mar.), 412–425. Google ScholarDigital Library
    24. Torrance, K. E., and Sparrow, E. M. 1967. Theory for off-specular reflection from roughened surfaces. J. Opt. Soc. Am. 57, 9 (Sep), 1105–1112.Google ScholarCross Ref
    25. Ward, G. 1992. Measuring and modeling anisotropic reflection. ACM SIGGRAPH Computer Graphics 26, 2, 265–272. Google ScholarDigital Library
    26. Worley, S. 1996. A cellular texture basis function. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’96, 291–294. Google ScholarDigital Library
    27. Wu, H., Dorsey, J., and Rushmeier, H. 2009. Characteristic point maps. Computer Graphics Forum 28, 4, 1227–1236. Google ScholarDigital Library
    28. Wu, H., Dorsey, J., and Rushmeier, H. 2011. Physically-based interactive bi-scale material design. ACM Transactions on Graphics (TOG). Google ScholarDigital Library
    29. Yan, L.-Q., Hašan, M., Jakob, W., Lawrence, J., Marschner, S., and Ramamoorthi, R. 2014. Rendering glints on high-resolution normal-mapped specular surfaces. ACM Trans. Graph. 33, 4 (July), 116:1–116:9. Google ScholarDigital Library

ACM Digital Library Publication: