“Multi-scale modeling and rendering of granular materials”

  • ©Johannes Meng, Marios Papas, Ralf Habel, Carsten Dachsbacher, Steve Marschner, Markus Gross, and Wojciech Jarosz



Session Title:

    Rendering Complex Appearance


    Multi-scale modeling and rendering of granular materials




    We address the problem of modeling and rendering granular materials—such as large structures made of sand, snow, or sugar—where an aggregate object is composed of many randomly oriented, but discernible grains. These materials pose a particular challenge as the complex scattering properties of individual grains, and their packing arrangement, can have a dramatic effect on the large-scale appearance of the aggregate object. We propose a multi-scale modeling and rendering framework that adapts to the structure of scattered light at different scales. We rely on path tracing the individual grains only at the finest scale, and—by decoupling individual grains from their arrangement—we develop a modular approach for simulating longer-scale light transport. We model light interactions within and across grains as separate processes and leverage this decomposition to derive parameters for classical radiative transport, including standard volumetric path tracing and a diffusion method that can quickly summarize the large scale transport due to many grain interactions. We require only a one-time precomputation per exemplar grain, which we can then reuse for arbitrary aggregate shapes and a continuum of different packing rates and scales of grains. We demonstrate our method on scenes containing mixtures of tens of millions of individual, complex, specular grains that would be otherwise infeasible to render with standard techniques.


    1. Ashikhmin, M., Premoze, S., and Shirley, P. S. 2000. A microfacet-based BRDF generator. In Proc. of ACM SIGGRAPH, 65–74. Google ScholarDigital Library
    2. Bruneton, E., and Neyret, F. 2012. A survey of non-linear prefiltering methods for efficient and accurate surface shading. IEEE Trans. on Visualization and Computer Graphics 18, 2, 242–260. Google ScholarDigital Library
    3. Bubnik, Z., Kadlec, P., Urban, D., and Bruhns, M. 1998. Sugar Technologists Manual. Verlag Dr. Albert Bartens.Google Scholar
    4. Cerezo, E., Pérez, F., Pueyo, X., Seron, F. J., and Sillion, F. X. 2005. A survey on participating media rendering techniques. The Visual Computer 21, 5, 303–328.Google ScholarDigital Library
    5. Chandrasekar, S. 1960. Radiative Transfer. Dover Publications.Google Scholar
    6. Chen, Y., Tong, X., Wang, J., Lin, S., Guo, B., and Shum, H.-Y. 2004. Shell texture functions. ACM Trans. on Graphics (Proc. SIGGRAPH) 23, 3, 343–353. Google ScholarDigital Library
    7. Christensen, P. H., Harker, G., Shade, J., Schubert, B., and Batali, D. 2012. Multiresolution radiosity caching for global illumination in movies. In ACM SIGGRAPH Talks. Google ScholarDigital Library
    8. Cuffey, K., and Paterson, W. 2010. The physics of glaciers. Academic Press.Google Scholar
    9. Dana, K. J., van Ginneken, B., Nayar, S. K., and Koenderink, J. J. 1999. Reflectance and texture of real-world surfaces. ACM Trans. on Graphics 18, 1, 1–34. Google ScholarDigital Library
    10. d’Eon, E., and Irving, G. 2011. A quantized-diffusion model for rendering translucent materials. ACM Trans. on Graphics (Proc. SIGGRAPH) 30, 4, 56:1–56:14. Google ScholarDigital Library
    11. d’Eon, E. 2013. Rigorous asymptotic and moment-preserving diffusion approximations for generalized linear boltzmann transport in arbitrary dimension. Transport Theory and Statistical Physics 42, 6-7, 237–297.Google Scholar
    12. Dixmier, M. 1978. Une nouvelle description des empilements aléatoires et des fluides denses. Le Journal de Physique 39, 873–895.Google ScholarCross Ref
    13. Donev, A., Cisse, I., Sachs, D., Variano, E. A., Stillinger, F. H., Connelly, R., Torquato, S., and Chaikin, P. M. 2004. Improving the density of jammed disordered packings using ellipsoids. Science 303, 5660 (Feb.), 990–993.Google ScholarCross Ref
    14. Donner, C., and Jensen, H. W. 2005. Light diffusion in multi-layered translucent materials. ACM Trans. on Graphics (Proc. SIGGRAPH) 24, 3, 1032–1039. Google ScholarDigital Library
    15. Donovan, T., Sutton, T., and Danon, Y. 2003. Implementation of chord length sampling for transport through a binary stochastic mixture. In Nuclear Mathematical and Computational Sciences: A Century in Review, A Century Anew.Google Scholar
    16. Dullien, F. A. L. 1991. Porous Media: Fluid Transport and Pore Structure, 2nd ed. Academic Press Inc.Google Scholar
    17. Durant, S., Calvo-Perez, O., Vukadinovic, N., and Greffet, J.-J. 2007. Light scattering by a random distribution of particles embedded in absorbing media: full-wave Monte Carlo solutions of the extinction coefficient. Journal of the Optical Society of America 24, 9, 2953–2962.Google ScholarCross Ref
    18. Filip, J., and Haindl, M. 2009. Bidirectional texture function modeling: A state of the art survey. IEEE Trans. on Pattern Analysis and Machine Intelligence 31, 11, 1921–1940. Google ScholarDigital Library
    19. Foldy, L. L. 1945. The multiple scattering of waves. I. General theory of isotropic scattering by randomly distributed scatterers. Physical Review 67, 107–119.Google ScholarCross Ref
    20. Habel, R., Christensen, P. H., and Jarosz, W. 2013. Photon beam diffusion: A hybrid monte carlo method for subsurface scattering. Computer Graphics Forum (Proc. Eurographics Symposium on Rendering) 32, 4. Google ScholarDigital Library
    21. Henyey, L. G., and Greenstein, J. L. 1941. Diffuse radiation in the galaxy. The Astrophysical Journal 93, 70–83.Google ScholarCross Ref
    22. Jakob, W., 2010. Mitsuba renderer. http://mitsuba-renderer.org.Google Scholar
    23. Jensen, H. W., Marschner, S. R., Levoy, M., and Hanrahan, P. 2001. A practical model for subsurface light transport. Computer Graphics (Proc. SIGGRAPH) 35, 511–518. Google ScholarDigital Library
    24. Kajiya, J. T., and Kay, T. L. 1989. Rendering fur with three dimensional textures. In Computer Graphics (Proc. SIGGRAPH), 271–280. Google ScholarDigital Library
    25. Kajiya, J. T. 1986. The rendering equation. Computer Graphics (Proc. SIGGRAPH) 20, 143–150. Google ScholarDigital Library
    26. Kimmel, B. W., and Baranoski, G. V. G. 2007. A novel approach for simulating light interaction with particulate materials: application to the modeling of sand spectral properties. Optics Express 15, 15, 9755–9777.Google ScholarCross Ref
    27. Levitz, P. 1993. Knudsen diffusion and excitation transfer in random porous media. Journal of Physical Chemistry 97, 3813–3818.Google ScholarCross Ref
    28. Li, H., Pellacini, F., and Torrance, K. E. 2005. A hybrid Monte Carlo method for accurate and efficient subsurface scattering. In Proc. Eurographics Symposium on Rendering, 283–290. Google ScholarDigital Library
    29. Luebke, D., Watson, B., Cohen, J. D., Reddy, M., and Varshney, A. 2002. Level of Detail for 3D Graphics. Elsevier Science Inc. Google ScholarDigital Library
    30. Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. A data-driven reflectance model. ACM Trans. on Graphics (Proc. SIGGRAPH) 22, 3, 759–769. Google ScholarDigital Library
    31. McWhorter, D. B., and Sunada, D. K. 1977. Ground-water hydrology and hydraulics. Water Resources Publications, LLC.Google Scholar
    32. Moon, J. T., and Marschner, S. R. 2006. Simulating multiple scattering in hair using a photon mapping approach. ACM Trans. on Graphics (Proc. SIGGRAPH) 25, 3, 1067–1074. Google ScholarDigital Library
    33. Moon, J. T., Walter, B., and Marschner, S. R. 2007. Rendering discrete random media using precomputed scattering solutions. In Proc. Eurographics Symposium on Rendering, 231–242. Google ScholarDigital Library
    34. Neyret, F. 1998. Modeling, animating, and rendering complex scenes using volumetric textures. IEEE Trans. on Visualization and Computer Graphics 4, 1, 55–70. Google ScholarDigital Library
    35. Olson, G., Miller, D., Larsen, E., and Morel, J. 2006. Chord length distributions in binary stochastic media in two and three dimensions. Journal of Quantitative Spectroscopy & Radiative Transfer 101, 269–283.Google ScholarCross Ref
    36. Peytavie, A., Galin, E., Merillou, S., and Grosjean, J. 2009. Procedural Generation of Rock Piles Using Aperiodic Tiling. Computer Graphics Forum (Proc. Pacific Graphics) 28, 7, 1801–1810.Google ScholarCross Ref
    37. Pharr, M., and Hanrahan, P. M. 2000. Monte carlo evaluation of non-linear scattering equations for subsurface reflection. In Proc. of ACM SIGGRAPH, 75–84. Google ScholarDigital Library
    38. Pharr, M., and Humphreys, G. 2010. Physically Based Rendering, Second Edition: From Theory to Implementation, 2nd ed. Morgan Kaufmann Publishers Inc. Google ScholarDigital Library
    39. Randrianalisoa, J., and Baillis, D. 2009. Radiative transfer in dispersed media: Comparison between homogeneous phase and multiphase approaches. Journal of Heat Transfer 132, 2, 023405–023405.Google ScholarCross Ref
    40. Randrianalisoa, J., and Baillis, D. 2010. Radiative properties of densely packed spheres in semitransparent media: A new geometric optics approach. Journal of Quantitative Spectroscopy and Radiative Transfer 111, 10, 1372–1388.Google ScholarCross Ref
    41. Rushmeier, H. E. 1988. Realistic Image Synthesis for Scenes with Radiatively Participating Media. PhD thesis, Cornell University, Ithaca, NY, USA. Google ScholarDigital Library
    42. Sadeghi, I., Muñoz, A., Laven, P., Jarosz, W., Seron, F., Gutierrez, D., and Jensen, H. W. 2012. Physically-based simulation of rainbows. ACM Trans. on Graphics 31, 1, 3:1–3:12. Google ScholarDigital Library
    43. Schröder, K., Klein, R., and Zinke, A. 2011. A volumetric approach to predictive rendering of fabrics. Computer Graphics Forum (Proc. Eurographics Symposium on Rendering) 30, 4, 1277–1286. Google ScholarDigital Library
    44. Singh, B., and Kaviany, M. 1992. Modelling radiative heat transfer in packed beds. International Journal of Heat and Mass Transfer 35, 6, 1397–1405.Google ScholarCross Ref
    45. Skoge, M., Donev, A., Stillinger, F. H., and Torquato, S. 2006. Packing hyperspheres in high-dimensional Euclidean spaces. Physical Review E 74, 4, 041127.Google ScholarCross Ref
    46. Song, C., Wang, P., and Makse, H. A. 2008. A phase diagram for jammed matter. Nature, 7195, 629–632.Google ScholarCross Ref
    47. Stam, J. 1995. Multiple scattering as a diffusion process. Proc. Eurographics Workshop on Rendering, 41–50.Google ScholarCross Ref
    48. Tong, X., Wang, J., Lin, S., Guo, B., and Shum, H.-Y. 2005. Modeling and rendering of quasi-homogeneous materials. ACM Trans. on Graphics (Proc. SIGGRAPH) 24, 3, 1054–1061. Google ScholarDigital Library
    49. Torquato, S., and Lu, B. 1993. Chord-length distribution function for two-phase random media. Physical Review E 47, 2950–2953.Google ScholarCross Ref
    50. Torquato, S. 2001. Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Interdisciplinary Applied Mathematics. Springer.Google Scholar
    51. Torrance, K. E., and Sparrow, E. M. 1967. Theory for off-specular reflection from roughened surfaces. Journal of the Optical Society of America 57, 9, 1105–1112.Google ScholarCross Ref
    52. Westin, S. H., Arvo, J. R., and Torrance, K. E. 1992. Predicting reflectance functions from complex surfaces. In Computer Graphics (Proc. SIGGRAPH), 255–264. Google ScholarDigital Library
    53. Wu, H., Dorsey, J., and Rushmeier, H. 2013. Inverse bi-scale material design. ACM Trans. on Graphics (Proc. SIGGRAPH Asia) 32. Google ScholarDigital Library
    54. Zhao, S., Hašan, M., Ramamoorthi, R., and Bala, K. 2013. Modular flux transfer: efficient rendering of high-resolution volumes with repeated structures. ACM Trans. on Graphics (Proc. SIGGRAPH) 32, 4, 131:1–131:12. Google ScholarDigital Library
    55. Zinke, A., and Weber, A. 2006. Global illumination for fiber based geometries. In Proc. Ibero-American Symposium in Computer Graphics (SIACG).Google Scholar
    56. Zinke, A., and Weber, A. 2007. Light scattering from filaments. IEEE Transactions on Visualization and Computer Graphics 13, 2, 342–356. Google ScholarDigital Library
    57. Zinke, A., Yuksel, C., Weber, A., and Keyser, J. 2008. Dual scattering approximation for fast multiple scattering in hair. ACM Trans. on Graphics (Proc. SIGGRAPH) 27, 3, 32:1–32:10. Google ScholarDigital Library

ACM Digital Library Publication: