“Metamolds: computational design of silicone molds” by Alderighi, Malomo, Giorgi, Pietroni, Bickel, et al. …

  • ©Thomas Alderighi, Luigi Malomo, Daniela Giorgi, Nico Pietroni, Bernd Bickel, and Paolo Cignoni

Conference:


Type:


Entry Number: 136

Title:

    Metamolds: computational design of silicone molds

Session/Category Title: New Additions (and Subtractions) to Fabrication


Presenter(s)/Author(s):


Moderator(s):



Abstract:


    We propose a new method for fabricating digital objects through reusable silicone molds. Molds are generated by casting liquid silicone into custom 3D printed containers called metamolds. Metamolds automatically define the cuts that are needed to extract the cast object from the silicone mold. The shape of metamolds is designed through a novel segmentation technique, which takes into account both geometric and topological constraints involved in the process of mold casting. Our technique is simple, does not require changing the shape or topology of the input objects, and only requires of-the-shelf materials and technologies. We successfully tested our method on a set of challenging examples with complex shapes and rich geometric detail.

References:


    1. Marco Attene. 2015. Shapes In a Box: Disassembling 3D Objects for Efficient Packing and Fabrication. Comput. Graph. Forum 34, 8 (Dec. 2015), 64–76. Google ScholarDigital Library
    2. V. Babaei, J. Ramos, Y. Lu, G. Webster, and W. Matusik. 2017. FabSquare: Fabricating Photopolymer Objects by Mold 3D Printing and UV Curing. IEEE Computer Graphics and Applications 37, 3 (May 2017), 34–42. Google ScholarDigital Library
    3. Amit H. Bermano, Thomas Funkhouser, and Szymon Rusinkiewicz. 2017. State of the Art in Methods and Representations for Fabrication-Aware Design. Comput. Graph. Forum 36, 2 (May 2017), 509–535. Google ScholarDigital Library
    4. S. Biasotti, D. Giorgi, M. Spagnuolo, and B. Falcidieno. 2008. Reeb Graphs for Shape Analysis and Applications. Theor. Comput. Sci. 392, 1–3 (Feb. 2008), 5–22. Google ScholarDigital Library
    5. Yuri Boykov, Olga Veksler, and Ramin Zabih. 2001. Fast Approximate Energy Minimization via Graph Cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23, 11 (Nov. 2001), 1222–1239. Google ScholarDigital Library
    6. Tim Bruckner, Zach Oat, and Ruben Procopio. 2010. Pop sculpture. Watson-Guptill Publications.Google Scholar
    7. Vicent Caselles, Ron Kimmel, and Guillermo Sapiro. 1997. Geodesic Active Contours. Int. J. Comput. Vision 22, 1 (Feb. 1997), 61–79. Google ScholarDigital Library
    8. Pritam Chakraborty and N. Venkata Reddy. 2009. Automatic determination of parting directions, parting lines and surfaces for two-piece permanent molds. Journal of Materials Processing Technology 209, 5 (2009), 2464 — 2476.Google ScholarCross Ref
    9. Xiaobai Chen, Aleksey Golovinskiy, and Thomas Funkhouser. 2009. A Benchmark for 3D Mesh Segmentation. ACM Trans. Graph. 28, 3, Article 73 (July 2009), 12 pages. Google ScholarDigital Library
    10. Xuelin Chen, Hao Zhang, Jinjie Lin, Ruizhen Hu, Lin Lu, Qixing Huang, Bedrich Benes, Daniel Cohen-Or, and Baoquan Chen. 2015. Dapper: Decompose-and-pack for 3D Printing. ACM Trans. Graph. 34, 6, Article 213 (Oct. 2015), 12 pages. Google ScholarDigital Library
    11. Ernest P De Garmo, J Temple Black, and Ronald A Kohser. 2011. DeGarmo’s materials and processes in manufacturing. John Wiley & Sons.Google Scholar
    12. Andrew Delong, Anton Osokin, Hossam N. Isack, and Yuri Boykov. 2012. Fast Approximate Energy Minimization with Label Costs. Int. J. Comput. Vision 96, 1 (Jan. 2012), 1–27. Google ScholarDigital Library
    13. Tamal K. Dey, Fengtao Fan, and Yusu Wang. 2013. An Efficient Computation of Handle and Tunnel Loops via Reeb Graphs. ACM Trans. Graph. 32, 4, Article 32 (July 2013), 10 pages. Google ScholarDigital Library
    14. Gurobi Optimization, Inc. 2016. Gurobi Optimizer Reference Manual. (2016). http://www.gurobi.comGoogle Scholar
    15. Philipp Herholz, Wojciech Matusik, and Marc Alexa. 2015. Approximating Free-form Geometry with Height Fields for Manufacturing. Comput. Graph. Forum 34, 2 (May 2015), 239–251. Google ScholarDigital Library
    16. Ruizhen Hu, Honghua Li, Hao Zhang, and Daniel Cohen-Or. 2014. Approximate Pyramidal Shape Decomposition. ACM Trans. Graph. 33, 6, Article 213 (Nov. 2014), 12 pages. Google ScholarDigital Library
    17. Alec Jacobson. 2017. Generalized Matryoshka: Computational Design of Nesting Objects. Comput. Graph. Forum 36, 5 (Aug. 2017), 27–35. Google ScholarDigital Library
    18. Evangelos Kalogerakis, Aaron Hertzmann, and Karan Singh. 2010. Learning 3D Mesh Segmentation and Labeling. ACM Trans. Graph. 29, 4, Article 102 (July 2010), 12 pages. Google ScholarDigital Library
    19. Michael Kazhdan and Hugues Hoppe. 2013. Screened Poisson Surface Reconstruction. ACM Trans. Graph. 32, 3, Article 29 (July 2013), 13 pages. Google ScholarDigital Library
    20. Benjamin Keinert, Matthias Innmann, Michael Sänger, and Marc Stamminger. 2015. Spherical Fibonacci Mapping. ACM Trans. Graph. 34, 6, Article 193 (Oct. 2015), 7 pages. Google ScholarDigital Library
    21. Alan C. Lin and Nguyen Huu Quang. 2014. Automatic generation of mold-piece regions and parting curves for complex CAD models in multi-piece mold design. Computer-Aided Design 57 (2014), 15 — 28.Google ScholarCross Ref
    22. O. Litany, E. Rodolà, A. M. Bronstein, M. M. Bronstein, and D. Cremers. 2016. Non-Rigid Puzzles. Comput. Graph. Forum 35, 5 (Aug. 2016), 135–143.Google ScholarDigital Library
    23. Ligang Liu, Ariel Shamir, Charlie Wang, and Emily Whitening. 2014. 3D Printing Oriented Design: Geometry and Optimization. In SIGGRAPH Asia 2014 Courses (SA ’14). ACM, New York, NY, USA, Article 1. Google ScholarDigital Library
    24. Linjie Luo, Ilya Baran, Szymon Rusinkiewicz, and Wojciech Matusik. 2012. Chopper: Partitioning Models into 3D-printable Parts. ACM Trans. Graph. 31, 6, Article 129 (Nov. 2012), 9 pages. Google ScholarDigital Library
    25. Luigi Malomo, Nico Pietroni, Bernd Bickel, and Paolo Cignoni. 2016. FlexMolds: Automatic Design of Flexible Shells for Molding. ACM Trans. Graph. 35, 6, Article 223 (Nov. 2016), 12 pages. Google ScholarDigital Library
    26. M. Mortara, G. Patanè, M. Spagnuolo, B. Falcidieno, and J. Rossignac. 2004. Plumber: A Method for a Multi-scale Decomposition of 3D Shapes into Tubular Primitives and Bodies. In Proc. of the 9th ACM Symposium on Solid Modeling and Applications (SM ’04). Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 339–344. Google ScholarDigital Library
    27. Daniele Panozzo, Enrico Puppo, Marco Tarini, and Olga Sorkine-Hornung. 2014. Frame Fields: Anisotropic and Non-orthogonal Cross Fields. ACM Trans. Graph. 33, 4, Article 134 (July 2014), 11 pages. Google ScholarDigital Library
    28. Guodong Rong and Tiow-Seng Tan. 2006. Jump Flooding in GPU with Applications to Voronoi Diagram and Distance Transform. In Proceedings of the 2006 Symposium on Interactive 3D Graphics and Games (I3D ’06). ACM, New York, NY, USA, 109–116. Google ScholarDigital Library
    29. Ariel Shamir. 2008. A survey on Mesh Segmentation Techniques. Computer Graphics Forum (2008).Google Scholar
    30. L. Shapira, S. Shalom, A. Shamir, D. Cohen-Or, and H. Zhang. 2010. Contextual Part Analogies in 3D Objects. Int. J. Comput. Vision 89, 2–3 (Sept. 2010), 309–326. Google ScholarDigital Library
    31. Oana Sidi, Oliver van Kaick, Yanir Kleiman, Hao Zhang, and Daniel Cohen-Or. 2011. Unsupervised Co-segmentation of a Set of Shapes via Descriptor-space Spectral Clustering. ACM Trans. Graph. 30, 6, Article 126 (Dec. 2011), 10 pages. Google ScholarDigital Library
    32. Robert W. Sumner and Jovan Popović. 2004. Deformation Transfer for Triangle Meshes. ACM Trans. Graph. 23, 3 (Aug. 2004), 399–405. Google ScholarDigital Library
    33. Nobuyuki Umetani, Bernd Bickel, and Wojciech Matusik. 2015. Computational Tools for 3D Printing. In ACM SIGGRAPH 2015 Courses (SIGGRAPH ’15). ACM, New York, NY, USA, Article 9. Google ScholarDigital Library
    34. J. Vanek, J. A. Garcia Galicia, B. Benes, R. Mźch, N. Carr, O. Stava, and G. S. Miller. 2014. PackMerger: A 3D Print Volume Optimizer. Comput. Graph. Forum 33, 6 (Sept. 2014), 322–332. Google ScholarDigital Library
    35. Somlak Wannarumon. 2011. Reviews of Computer-Aided Technologies for Jewelry Design and Casting. Naresuan University Engineering Journal 6, 1 (2011), 45–56.Google Scholar
    36. Chunjie Zhang, Xionghui Zhou, and Congxin Li. 2010. Feature extraction from freeform molded parts for moldability analysis. The International Journal of Advanced Manufacturing Technology 48, 1 (01 Apr 2010), 273–282.Google ScholarCross Ref
    37. Eugene Zhang, Konstantin Mischaikow, and Greg Turk. 2005. Feature-based Surface Parameterization and Texture Mapping. ACM Trans. Graph. 24, 1 (Jan. 2005), 1–27. Google ScholarDigital Library
    38. Qingnan Zhou, Eitan Grinspun, Denis Zorin, and Alec Jacobson. 2016. Mesh Arrangements for Solid Geometry. ACM Trans. Graph. 35, 4, Article 39 (July 2016), 15 pages. Google ScholarDigital Library
    39. Song Chun Zhu and Alan Yuille. 1996. Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18, 9 (Sept. 1996), 884–900. Google ScholarDigital Library


ACM Digital Library Publication: