“Mesh editing with poisson-based gradient field manipulation” by Yu, Zhou, Xu, Shi, Bao, et al. …

  • ©Yizhou Yu, Kun Zhou, Dong Xu, Xiaohan Shi, Hujun Bao, Baining Guo, and Heung-Yeung Shum




    Mesh editing with poisson-based gradient field manipulation



    In this paper, we introduce a novel approach to mesh editing with the Poisson equation as the theoretical foundation. The most distinctive feature of this approach is that it modifies the original mesh geometry implicitly through gradient field manipulation. Our approach can produce desirable and pleasing results for both global and local editing operations, such as deformation, object merging, and smoothing. With the help from a few novel interactive tools, these operations can be performed conveniently with a small amount of user interaction. Our technique has three key components, a basic mesh solver based on the Poisson equation, a gradient field manipulation scheme using local transforms, and a generalized boundary condition representation based on local frames. Experimental results indicate that our framework can outperform previous related mesh editing techniques.


    1. ABRAHAM, R., MARSDEN, J., AND RATIU, T. 1988. Manifolds, Tensor Analysis, and Applications, vol. 75. Springer. Applied Mathematical Sciences. Google ScholarDigital Library
    2. ALEXA, M., COHEN-OR, D., AND LEVIN, D. 2000. As-rigid-as-possible shape interpolation. In SIGGRAPH 2000 Conference Proceedings, 157–164. Google ScholarDigital Library
    3. BAJAJ, C., AND XU, G. 2003. Anisotropic diffusion on surfaces and functions on surfaces. ACM Trans. Graphics 22, 1, 4–32. Google ScholarDigital Library
    4. BARR, A. 1984. Global and local deformations of solid primitives. Computer Graphics(SIGGRAPH’84) 18, 3, 21–30. Google ScholarDigital Library
    5. BENDELS, G., AND KLEIN, R. 2003. Mesh forging: Editing of 3D-meshes using implicitly defined occluders. In Symposium on Geometry Processing. Google ScholarDigital Library
    6. BIERMANN, H., KRISTJANSSON, D., AND ZORIN, D. 2001. Approximate boolean operations on free-form solids. In Proceedings of SIGGRAPH, 185–194. Google ScholarDigital Library
    7. CHANG, Y.-K., AND ROCKWOOD, A. 1994. A generalized de casteljau approach to 3D free-form deformation. In Proc. SIGGRAPH’94, 257–260. Google ScholarDigital Library
    8. COQUILLART, S. 1990. Extended free-form deformation: A sculpturing tool for 3D geometric modeling. Computer Graphics(SIGGRAPH’90) 24, 4, 187–196. Google ScholarDigital Library
    9. DESBRUN, M., MEYER, M., SCHRÖDER, P., AND BARR, A. 2000. Anisotropic feature-preserving denoising of height fields and bivariate data. In Proc. Graphics Interface, 145–152.Google Scholar
    10. FLEISHMAN, S., DRORI, I., AND COHEN-OR, D. 2003. Bilateral mesh denoising. ACM Trans. Graphics 22, 3, 950–953. Google ScholarDigital Library
    11. GUSKOV, I., SWELDENS, W., AND SCHRÖDER, P. 1999. Multiresolution signal processing for meshes. In Proc. SIGGRAPH’99, 325–334. Google ScholarDigital Library
    12. HSU, W., HUGHES, J., AND KAUFMAN, H. 1992. Direct manipulation of free-form deformations. In Proc. SIGGRAPH’92, 177–184. Google ScholarDigital Library
    13. JONES, T., DURAND, F., AND DESBRUN, M. 2003. Non-iterative, feature-preserving mesh smoothing. ACM Trans. Graphics 22, 3, 943–949. Google ScholarDigital Library
    14. KARNI, Z., AND GOTSMAN, C. 2000. Spectral compression of mesh geometry. In Proc. SIGGRAPH’00, 279–287. Google ScholarDigital Library
    15. KOBBELT, L., CAMPAGNA, S., VORSATZ, J., AND SEIDEL, H.-P. 1998. Interactive multi-resolution modeling on arbitrary meshes. In Proc. SIGGRAPH’98, 105–114. Google ScholarDigital Library
    16. KOBBELT, L., BAREUTHER, T., AND SEIDEL, H.-P. 2000. Multiresolution shape deformations for meshes with dynamic vertex connectivity. In Proc. Eurographics’2000.Google ScholarCross Ref
    17. LAZARUS, F., COQUILLART, S., AND JANCENE, P. 1994. Axial deformations: An intuitive deformation technique. Computer Aided Design 26, 8, 607–613.Google ScholarCross Ref
    18. LÉVY, B. 2003. Dual domain extrapolation. ACM TOG 22, 3, 364–369. Google ScholarDigital Library
    19. LLAMAS, I., KIM, B., GARGUS, J., ROSSIGNAC, J., AND SHAW, C. D. 2003. Twister: A space-warp operator for the two-handed editing of 3D shapes. ACM Trans. Graphics 22, 3, 663–668. Google ScholarDigital Library
    20. MACCRACKEN, R., AND JOY, K. 1996. Free-form deformations with lattices of arbitrary topology. In Proceedings of SIGGRAPH’96, 181–188. Google ScholarDigital Library
    21. MEYER, M., DESBRUN, M., SCHRÖDER, P., AND BARR, A. 2002. Discrete differential-geometry operators for triangulated 2-manifolds. In Proc. VisMath.Google Scholar
    22. MILLIRON, T., JENSEN, R., BARZEL, R., AND FINKELSTEIN, A. 2002. A framework for geometric warps and deformations. ACM Trans. Graphics 21, 1, 20–51. Google ScholarDigital Library
    23. MUSETH, K., BREEN, D., WHITAKER, R., AND BARR, A. 2002. Level set surface editing operators. ACM Transactions on Graphics 21, 3, 330–338. Google ScholarDigital Library
    24. PAULY, M., KEISER, R., KOBBELT, L., AND GROSS, M. 2003. Shape modeling with point-sampled geometry. ACM Trans. Graphics 22, 3, 641–650. Google ScholarDigital Library
    25. PEREZ, P., GANGNET, M., AND BLAKE, A. 2003. Poisson image editing. ACM Trans. on Graphics 22, 313–318. Google ScholarDigital Library
    26. PERONA, P., AND MALIK, J. 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Patt. Anal. Mach. Intell. 12, 7, 629–639. Google ScholarDigital Library
    27. POLTHIER, K., AND PREUSS, E. 2000. Variational approach to vector field decomposition. In Proc. Eurographics Workshop on Scientific Visualization.Google ScholarCross Ref
    28. SEDERBERG, T., AND PARRY, S. 1986. Free-form deformation of solid geometric models. Computer Graphics(SIGGRAPH’86) 20, 4, 151–160. Google ScholarDigital Library
    29. SETHIAN, J. 1999. Level Set Methods and Fast Marching Methods. Cambridge University Press.Google Scholar
    30. SINGH, K., AND FIUME, E. 1998. Wires: A geometric deformation technique. In Proc. SIGGRAPH’98, 405–414. Google ScholarDigital Library
    31. SINGH, K., 2004. personal communication.Google Scholar
    32. SORKINE, O., COHEN-OR, D., LIPMAN, Y., ALEXA, M., RÖSSL, C., AND SEIDEL, H.-P. 2004. Laplacian surface editing. Tech. rep., March 2004.Google Scholar
    33. STAM, J. 1999. Stable fluids. In SIGGRAPH 99 Conference Proceedings, 121–128. Google ScholarDigital Library
    34. TASDIZEN, T., WHITAKER, R., BURCHARD, P., AND OSHER, S. 2002. Geometric surface smoothing via anisotropic diffusion of normals. In Proceedings IEEE Visualization, 125–132. Google ScholarDigital Library
    35. TAUBIN, G. 1995. A signal processing approach to fair surface design. In Proc. SIGGRAPH’95, 351–358. Google ScholarDigital Library
    36. TAUBIN, G. 2001. Linear anisotropic mesh filtering. Tech. rep., IBM Research Report RC2213.Google Scholar
    37. TOHLINE, J., 1999. Origin of the poisson equation. http://www.phys.lsu.edu/astro/H_Book.current/Context/PGE/poisson.origin.text.pdf.Google Scholar
    38. TONG, Y., LOMBEYDA, S., HIRANI, A., AND DESBRUN, M. 2003. Discrete multiscale vector field decomposition. ACM Trans. Graphics 22, 3, 445–452. Google ScholarDigital Library
    39. YAGOU, H., OHTAKE, Y., AND BELYAEV, A. 2003. Mesh denoising via iterative alpha-trimming and nonlinear diffusion of normals with automatic thresholding. In Proc. Computer Graphics Intl.Google ScholarCross Ref

ACM Digital Library Publication:

Overview Page: