“LinkEdit: interactive linkage editing using symbolic kinematics” by Thomaszewski

  • ©Moritz Bächer, Stelian Coros, and Bernhard Thomaszewski




    LinkEdit: interactive linkage editing using symbolic kinematics


Session Title: Fabrication & Function



    We present a method for interactive editing of planar linkages. Given a working linkage as input, the user can make targeted edits to the shape or motion of selected parts while preserving other, e.g., functionally-important aspects. In order to make this process intuitive and efficient, we provide a number of editing tools at different levels of abstraction. For instance, the user can directly change the structure of a linkage by displacing joints, edit the motion of selected points on the linkage, or impose limits on the size of its enclosure. Our method safeguards against degenerate configurations during these edits, thus ensuring the correct functioning of the mechanism at all times. Linkage editing poses strict requirements on performance that standard approaches fail to provide. In order to enable interactive and robust editing, we build on a symbolic kinematics approach that uses closed-form expressions instead of numerical methods to compute the motion of a linkage and its derivatives. We demonstrate our system on a diverse set of examples, illustrating the potential to adapt and personalize the structure and motion of existing linkages. To validate the feasibility of our edited designs, we fabricated two physical prototypes.


    1. Autodesk. 2015. Autodesk MeshMixer. Available at http://www.123dapp.com/meshmixer.Google Scholar
    2. Bächer, M., Whiting, E., Bickel, B., and Sorkine-Hornung, O. 2014. Spin-it: Optimizing moment of inertia for spinnable objects. ACM Trans. Graph. (Proc. SIGGRAPH) 33, 4. Google ScholarDigital Library
    3. Bickel, B., Bächer, M., Otaduy, M. A., Lee, H. R., Pfister, H., Gross, M., and Matusik, W. 2010. Design and fabrication of materials with desired deformation behavior. Proc. of ACM SIGGRAPH ’10. Google ScholarDigital Library
    4. Bickel, B., Kaufmann, P., Skouras, M., Thomaszewski, B., Bradley, D., Beeler, T., Jackson, P., Marschner, S., Matusik, W., and Gross, M. 2012. Physical face cloning. In Proc. of ACM SIGGRAPH ’12. Google ScholarDigital Library
    5. Bokeloh, M., Wand, M., Koltun, V., and Seidel, H.-P. 2011. Pattern-aware shape deformation using sliding dockers. In Proc. of ACM SIGGRAPH ’11. Google ScholarDigital Library
    6. Bokeloh, M., Wand, M., Seidel, H.-P., and Koltun, V. 2012. An algebraic model for parameterized shape editing.Google Scholar
    7. Burmester, L. 1888. Lehrbuch der Kinematik. Arthur Felix, Leipzig.Google Scholar
    8. Ceylan, D., Li, W., Mitra, N. J., Agrawala, M., and Pauly, M. 2013. Designing and fabricating mechanical automata from mocap sequences. In Proc. of ACM SIGGRAPH Asia ’13.Google Scholar
    9. Coros, S., Thomaszewski, B., Noris, G., Sueda, S., Forberg, M., Sumner, R. W., Matusik, W., and Bickel, B. 2013. Computational design of mechanical characters. In Proc. of ACM SIGGRAPH ’13. Google ScholarDigital Library
    10. Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating spatially-varying subsurface scattering. In Proc. of ACM SIGGRAPH ’10. Google ScholarDigital Library
    11. Dumas, J., Hergel, J., and Lefebvre, S. 2014. Bridging the gap: Automated steady scaffoldings for 3d printing. In Proc. of ACM SIGGRAPH ’14. Google ScholarDigital Library
    12. Erdman, A. G., Sandor, G. N., and Kota, S. 2001. Mechanism Design: Analysis and Synthesis. Prentice-Hall, Englewood Cliffs, NJ. Vol. 1, No 4.Google Scholar
    13. Freudenstein, F. 1954. Design of Four-link Mechanisms. Ph. D. Thesis, Columbia University, USA.Google Scholar
    14. Gal, R., Sorkine, O., Mitra, N. J., and Cohen-Or, D. 2009. iwires: An analyze-and-edit approach to shape manipulation. In Proc. of ACM SIGGRAPH ’09. Google ScholarDigital Library
    15. Hasan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. In Proc. of ACM SIGGRAPH ’10. Google ScholarDigital Library
    16. Kaufman, R. E., and Maurer, W. G. 1971. Interactive linkage synthesis on a small computer. In Proceedings of the 1971 26th Annual Conference, ACM ’71, 376–387. Google ScholarDigital Library
    17. Kecskeméthy, A., Krupp, T., and Hiller, M. 1997. Symbolic processing of multiloop mechanism dynamics using closed-form kinematics solutions. Multibody System Dynamics 1, 1, 23–45.Google ScholarCross Ref
    18. Koo, B., Li, W., Yao, J., Agrawala, M., and Mitra, N. J. 2014. Creating works-like prototypes of mechanical objects. ACM Transactions on Graphics (Special issue of SIGGRAPH Asia 2014). Google ScholarDigital Library
    19. Lau, M., Ohgawara, A., Mitani, J., and Igarashi, T. 2011. Converting 3D furniture models to fabricatable parts and connectors. In Proc. of ACM SIGGRAPH ’11. Google ScholarDigital Library
    20. Laulusa, A., and Bauchau, O. A. 2008. Review of Classical Approaches for Constraint Enforcement in Multibody Systems. Journal of Computational and Nonlinear Dynamics 3, 1.Google ScholarCross Ref
    21. Lu, L., Sharf, A., Zhao, H., Wei, Y., Fan, Q., Chen, X., Savoye, Y., Tu, C., Cohen-Or, D., and Chen, B. 2014. Build-to-last: Strength to weight 3d printed objects. In Proc. of ACM SIGGRAPH ’14. Google ScholarDigital Library
    22. Megaro, V., Thomaszewski, B., Gauge, D., Grinspun, E., Coros, S., and Gross, M. H. 2014. Chacra: An interactive design system for rapid character crafting. In Proc. of Symp. on Computer Animation ’14.Google Scholar
    23. Mitra, N. J., Yang, Y.-L., Yan, D.-M., Li, W., and Agrawala, M. 2010. Illustrating how mechanical assemblies work. In Proc. of ACM SIGGRAPH ’10. Google ScholarDigital Library
    24. Myszka, D. H., Murray, A. P., and Wampler, C. W. 2013. Computing the branches, singularity trace, and critical points of single degree-of-freedom, closed-loop linkages. Journal of Mechanisms and Robotics 6, 1.Google ScholarCross Ref
    25. Perry, R. N., and Frisken, S. F. 2001. Kizamu: A system for sculpting digital characters. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, NY, USA, SIGGRAPH ’01, 47–56. Google ScholarDigital Library
    26. Prévost, R., Whiting, E., Lefebvre, S., and Sorkine-Hornung, O. 2013. Make It Stand: Balancing shapes for 3D fabrication. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4. Google ScholarDigital Library
    27. Schulz, A., Shamir, A., Levin, D. I. W., Sitthi-amorn, P., and Matusik, W. 2014. Design and fabrication by example. ACM Trans. Graph. 33, 4 (July), 62:1–62:11. Google ScholarDigital Library
    28. Skouras, M., Thomaszewski, B., Bickel, B., and Gross, M. 2012. Computational design of rubber balloons. In Proc. of Eurographics ’12. Google ScholarDigital Library
    29. Skouras, M., Thomaszewski, B., Coros, S., Bickel, B., and Gross, M. 2013. Computational design of actuated deformable characters. In Proc. of ACM SIGGRAPH ’13. Google ScholarDigital Library
    30. Sorkine, O., Cohen-Or, D., Lipman, Y., Alexa, M., Rössl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Proceedings of the EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Processing, ACM Press, 179–188. Google ScholarDigital Library
    31. Stava, O., Vanek, J., Benes, B., Carr, N., and Měch, R. 2012. Stress relief: improving structural strength of 3d printable objects. In Proc. of ACM SIGGRAPH ’12. Google ScholarDigital Library
    32. Thomaszewski, B., Coros, S., Gauge, D., Megaro, V., Grinspun, E., and Gross, M. 2014. Computational design of linkage-based characters. In Proc. of ACM SIGGRAPH ’14. Google ScholarDigital Library
    33. Uchida, T., and McPhee, J. 2012. Using grbner bases to generate efficient kinematic solutions for the dynamic simulation of multi-loop mechanisms. Mechanism and Machine Theory 52, 0, 144–157.Google ScholarCross Ref
    34. Umetani, N., Igarashi, T., and Mitra, N. J. 2012. Guided exploration of physically valid shapes for furniture design. In Proc. of ACM SIGGRAPH ’12. Google ScholarDigital Library
    35. Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. In Proc. of ACM SIGGRAPH ’09. Google ScholarDigital Library
    36. Zhou, Q., Panetta, J., and Zorin, D. 2013. Worst-case structural analysis. In Proc. of ACM SIGGRAPH ’13. Google ScholarDigital Library
    37. Zhu, L., Xu, W., Snyder, J., Liu, Y., Wang, G., and Guo, B. 2012. Motion-guided mechanical toy modeling. In Proc. of ACM SIGGRAPH Asia ’12. Google ScholarDigital Library

ACM Digital Library Publication: