“Linear subspace design for real-time shape deformation”
Conference:
Type(s):
Title:
- Linear subspace design for real-time shape deformation
Session/Category Title: Simsquishal Geometry
Presenter(s)/Author(s):
Moderator(s):
Abstract:
We propose a method to design linear deformation subspaces, unifying linear blend skinning and generalized barycentric coordinates. Deformation subspaces cut down the time complexity of variational shape deformation methods and physics-based animation (reduced-order physics). Our subspaces feature many desirable properties: interpolation, smoothness, shape-awareness, locality, and both constant and linear precision. We achieve these by minimizing a quadratic deformation energy, built via a discrete Laplacian inducing linear precision on the domain boundary. Our main advantage is speed: subspace bases are solutions to a sparse linear system, computed interactively even for generously tessellated domains. Users may seamlessly switch between applying transformations at handles and editing the subspace by adding, removing or relocating control handles. The combination of fast computation and good properties means that designing the right subspace is now just as creative as manipulating handles. This paradigm shift in handle-based deformation opens new opportunities to explore the space of shape deformations.
References:
1. Baran, I., and Popović, J. 2007. Automatic rigging and animation of 3D characters. ACM Trans. Graph. 26, 3, 72:1–72:8. Google ScholarDigital Library
2. Barbič, J., and James, D. L. 2005. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans. on Graph. 24, 3 (Aug.), 982–990. Google ScholarDigital Library
3. Ben-Chen, M., Weber, O., and Gotsman, C. 2009. Variational harmonic maps for space deformation. ACM Trans. Graph. 28, 3, 34:1–34:11. Google ScholarDigital Library
4. Bobach, T., Hering-Bertram, M., and Umlauf, G. 2006. Comparison of voronoi based scattered data interpolation schemes. In Proceedings of International Conference on Visualization, Imaging and Image Processing, 342–349.Google Scholar
5. Bookstein, F. L. 1989. Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Transactions on pattern analysis and machine intelligence 11, 6, 567–585. Google ScholarDigital Library
6. Botsch, M., and Kobbelt, L. 2004. An intuitive framework for real-time freeform modeling. ACM Trans. Graph. 23, 3. Google ScholarDigital Library
7. Botsch, M., and Kobbelt, L. 2005. Real-time shape editing using radial basis functions. Comput. Graph. Forum 24.Google Scholar
8. Botsch, M., and Sorkine, O. 2008. On linear variational surface deformation methods. IEEE Transactions on Visualization and Computer Graphics 14, 1, 213–230. Google ScholarDigital Library
9. Botsch, M., Pauly, M., Gross, M., and Kobbelt, L. 2006. PriMo: Coupled prisms for intuitive surface modeling. In Proc. SGP, 11–20. Google ScholarDigital Library
10. Botsch, M., Pauly, M., Wicke, M., and Gross, M. 2007. Adaptive space deformations based on rigid cells. Comput. Graph. Forum 26, 3, 339–347.Google ScholarCross Ref
11. Chao, I., Pinkall, U., Sanan, P., and Schröder, P. 2010. A simple geometric model for elastic deformations. ACM Trans. Graph. 29, 4 (July), 38:1–38:6. Google ScholarDigital Library
12. Davis, T. A. 2006. Cholmod: a sparse supernodal Cholesky factorization and modification package, version 3.0. University of Florida.Google Scholar
13. Desbrun, M., Meyer, M., and Alliez, P. 2002. Intrinsic parameterizations of surface meshes. Comput. Graph. Forum 21, 3, 209–218.Google ScholarCross Ref
14. Faure, F., Gilles, B., Bousquet, G., and Pai, D. K. 2011. Sparse meshless models of complex deformable solids. ACM Trans. Graph. 30. Google ScholarDigital Library
15. Finch, M., Snyder, J., and Hoppe, H. 2011. Freeform vector graphics with controlled thin-plate splines. ACM Trans. Graph. 30, 6, 166:1–166:10. Google ScholarDigital Library
16. Fisher, M., Schröder, P., Desbrun, M., and Hoppe, H. 2007. Design of tangent vector fields. ACM Trans. Graph. 26, 3. Google ScholarDigital Library
17. Gilles, B., Bousquet, G., Faure, F., and Pai, D. 2011. Frame-based elastic models. ACM Trans. Graph. 30, 2. Google ScholarDigital Library
18. Harmon, D., and Zorin, D. 2013. Subspace integration with local deformations. ACM Trans. Graph. 32, 4. Google ScholarDigital Library
19. Hauser, K. K., Shen, C., and O’Brien, J. F. 2003. Interactive deformation using modal analysis with constraints. In Proc. of Graphics Interface, 247–256.Google Scholar
20. Hildebrandt, K., Schulz, C., Tycowicz, C. V., and Polthier, K. 2011. Interactive surface modeling using modal analysis. ACM Trans. Graph. 30, 5, 119:1–119:11. Google ScholarDigital Library
21. Hormann, K., and Sukumar, N. 2008. Maximum entropy coordinates for arbitrary polytopes. Comput. Graph. Forum 27, 5. Google ScholarDigital Library
22. Huang, J., Shi, X., Liu, X., Zhou, K., Wei, L.-Y., Teng, S.-H., Bao, H., Guo, B., and Shum, H.-Y. 2006. Subspace gradient domain mesh deformation. ACM Trans. Graph. 25, 3. Google ScholarDigital Library
23. Igarashi, T., Moscovich, T., and Hughes, J. F. 2005. As-rigid-as-possible shape manipulation. ACM Trans. Graph. 24, 3. Google ScholarDigital Library
24. Jacobson, A., Tosun, E., Sorkine, O., and Zorin, D. 2010. Mixed finite elements for variational surface modeling. In Proc. SGP, 1565–1574.Google Scholar
25. Jacobson, A., Baran, I., Popović, J., and Sorkine, O. 2011. Bounded biharmonic weights for real-time deformation. ACM Trans. Graph. 30, 4, 78:1–78:8. Google ScholarDigital Library
26. Jacobson, A., Baran, I., Kavan, L., Popović, J., and Sorkine, O. 2012. Fast automatic skinning transformations. ACM Trans. Graph. 31, 4. Google ScholarDigital Library
27. Jacobson, A., Weinkauf, T., and Sorkine, O. 2012. Smooth shape-aware functions with controlled extrema. In Proc. SGP. Google ScholarDigital Library
28. Jacobson, A., Kavan, L.,, and Sorkine-Hornung, O. 2013. Robust inside-outside segmentation using generalized winding numbers. ACM Trans. Graph. 32, 4, 33:1–33:12. Google ScholarDigital Library
29. Jacobson, A., Deng, Z., Kavan, L., and Lewis, J. 2014. Skinning: Real-time shape deformation. In ACM SIGGRAPH 2014 Courses. Google ScholarDigital Library
30. Jacobson, A. 2013. Algorithms and Interfaces for Real-Time Deformation of 2D and 3D Shapes. PhD thesis, ETH Zurich.Google Scholar
31. James, D. L., and Pai, D. K. 2002. DyRT: Dynamic Response Textures for Real Time Deformation Simulation With Graphics Hardware. ACM Trans. Graph. 21, 3. Google ScholarDigital Library
32. Joshi, P., Meyer, M., DeRose, T., Green, B., and Sanocki, T. 2007. Harmonic coordinates for character articulation. ACM Trans. Graph. 26, 3, 71. Google ScholarDigital Library
33. Ju, T., Schaefer, S., and Warren, J. 2005. Mean value coordinates for closed triangular meshes. ACM Trans. Graph. 24, 3. Google ScholarDigital Library
34. Kavan, L., Sloan, P., and O’Sullivan, C. 2010. Fast and efficient skinning of animated meshes. Comput. Graph. Forum 29, 2, 327–336.Google ScholarCross Ref
35. Kavan, L., Gerszewski, D., Bargteil, A., and Sloan, P.-P. 2011. Physics-inspired upsampling for cloth simulation in games. ACM Trans. Graph. 30, 4, 93:1–93:9. Google ScholarDigital Library
36. Krysl, P., Lall, S., and Marsden, J. E. 2001. Dimensional model reduction in non-linear finite element dynamics of solids and structures. Int. J. for Numerical Methods in Engineering 51.Google Scholar
37. Langer, T., and Seidel, H.-P. 2008. Higher order barycentric coordinates. Comput. Graph. Forum 27, 2, 459–466.Google ScholarCross Ref
38. Li, X.-Y., and Hu, S.-M. 2013. Poisson coordinates.Google Scholar
39. Lipman, Y., Kopf, J., Cohen-Or, D., and Levin, D. 2007. GPU-assisted positive mean value coordinates for mesh deformations. In Proc. SGP, 117–124. Google ScholarDigital Library
40. Lipman, Y., Rustamov, R., and Funkhouser, T. 2010. Biharmonic distance. ACM Trans. Graph. 29, 3. Google ScholarDigital Library
41. Liu, L., Zhang, L., Xu, Y., Gotsman, C., and Gortler, S. J. 2008. A local/global approach to mesh parameterization. Comput. Graph. Forum 27, 5. Google ScholarDigital Library
42. Magnenat-Thalmann, N., Laperrière, R., and Thalmann, D. 1988. Joint-dependent local deformations for hand animation and object grasping. In Graphics Interface, 26–33. Google ScholarDigital Library
43. Martin, S., Thomaszewski, B., Grinspun, E., and Gross, M. 2011. Example-based elastic materials. ACM Trans. Graph. 30, 4 (July), 72:1–72:8. Google ScholarDigital Library
44. Merry, B., Marais, P., and Gain, J. 2006. Animation space: A truly linear framework for character animation. ACM Trans. Graph. 25, 4, 1400–1423. Google ScholarDigital Library
45. Müller, M., Heidelberger, B., Teschner, M., and Gross, M. 2005. Meshless deformations based on shape matching. ACM Trans. Graph. 24 (July), 471–478. Google ScholarDigital Library
46. Neumann, T., Varanasi, K., Wenger, S., Wacker, M., Magnor, M., and Theobalt, C. 2013. Sparse localized deformation components. ACM Trans. Graph. 32, 6. Google ScholarDigital Library
47. Nieto, J. R., and Susin, A. 2013. Cage based deformations: a survey. In Deformation Models. Springer, 75–99.Google Scholar
48. Ozolinš, V., Lai, R., Caflisch, R., and Osher, S. 2013. Compressed plane waves-compactly supported multiresolution basis for the laplace operator. Proc. of NAS.Google Scholar
49. Sacht, L., Jacobson, A., Panozzo, D., Schüller, C., and Sorkine-Hornung, O. 2013. Consistent volumetric discretizations inside self-intersecting surfaces. vol. 32, 147–156. Google ScholarDigital Library
50. Sederberg, T. W., and Parry, S. R. 1986. Free-form deformation of solid geometric models. In Proc. SIGGRAPH, 151–160. Google ScholarDigital Library
51. Sin, F. S., Schroeder, D., and Barbič, J. 2013. Vega: Non-linear fem deformable object simulator. In Computer Graphics Forum, vol. 32, Wiley Online Library, 36–48.Google Scholar
52. Sorkine, O., and Alexa, M. 2007. As-rigid-as-possible surface modeling. In Proc. SGP, 109–116. Google ScholarDigital Library
53. Sorkine, O., and Cohen-Or, D. 2004. Least-squares meshes. In Proc. SMI, 191–199. Google ScholarDigital Library
54. Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rössl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Proc. SGP, 179–188. Google ScholarDigital Library
55. Vallet, B., and Lévy, B. 2008. Spectral geometry processing with manifold harmonics. In Computer Graphics Forum, vol. 27, Wiley Online Library, 251–260.Google Scholar
56. Wang, X. C., and Phillips, C. 2002. Multi-weight enveloping: least-squares approximation techniques for skin animation. In Proc. SCA, 129–138. Google ScholarDigital Library
57. Wardetzky, M., Mathur, S., Kälberer, F., and Grinspun, E. 2007. Discrete Laplace operators: no free lunch. In Proc. SGP, 33–37. Google ScholarDigital Library
58. Weber, O., Ben-Chen, M., Gotsman, C., and Hormann, K. 2011. A complex view of barycentric mappings. Comput. Graph. Forum 30, 5.Google ScholarCross Ref
59. Xu, H., and Barbič, J. 2014. Signed distance fields for polygon soup meshes. Graphics Interface 2014. Google ScholarDigital Library
60. Xu, K., Zhang, H., Cohen-Or, D., and Xiong, Y. 2009. Dynamic harmonic fields for surface processing. Computers & Graphics 33, 3, 391–398. Google ScholarDigital Library
61. Zhang, J., Deng, B., Liu, Z., Patanè, G., Bouaziz, S., Hormann, K., and Liu, L. 2014. Local barycentric coordinates. ACM Trans. Graph. 33. Google ScholarDigital Library