“Linear rotation-invariant coordinates for meshes” by Lipman, Sorkine-Hornung, Levin and Cohen-Or
Conference:
Type(s):
Title:
- Linear rotation-invariant coordinates for meshes
Presenter(s)/Author(s):
Abstract:
We introduce a rigid motion invariant mesh representation based on discrete forms defined on the mesh. The reconstruction of mesh geometry from this representation requires solving two sparse linear systems that arise from the discrete forms: the first system defines the relationship between local frames on the mesh, and the second encodes the position of the vertices via the local frames. The reconstructed geometry is unique up to a rigid transformation of the mesh. We define surface editing operations by placing user-defined constraints on the local frames and the vertex positions. These constraints are incorporated in the two linear reconstruction systems, and their solution produces a deformed surface geometry that preserves the local differential properties in the least-squares sense. Linear combination of shapes expressed with our representation enables linear shape interpolation that correctly handles rotations. We demonstrate the effectiveness of the new representation with various detail-preserving editing operators and shape morphing.
References:
1. Alexa, M., Cohen-Or, D., and Levin, D. 2000. As-rigid-as-possible shape interpolation. In Proceedings of ACM SIGGRAPH 2000, ACM Press/Addison-Wesley Publishing Co., 157–164. Google ScholarDigital Library
2. Alexa, M. 2003. Differential coordinates for local mesh morphing and deformation. The Visual Computer 19, 2, 105–114.Google ScholarCross Ref
3. Bendels, G. H., and Klein, R. 2003. Mesh forging: editing of 3D-meshes using implicitly defined occluders. In Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, Eurographics Association, 207–217. Google ScholarDigital Library
4. Botsch, M., and Kobbelt, L. 2004. An intuitive framework for real-time freeform modeling. In Proceedings of ACM SIGGRAPH 2004, ACM Press, 630–634. Google ScholarDigital Library
5. Cazals, F., and Pouget, M. 2003. Estimating differential quantities using polynomial fitting of osculating jets. In Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, Eurographics Association, 177–187. Google ScholarDigital Library
6. Cohen-Or, D., Levin, D., and Solomovici, A. 1998. Three-dimensional distance field metamorphosis. ACM Trans. Graph. 17, 2, 116–141. Google ScholarDigital Library
7. Cohen-Steiner, D., and Morvan, J.-M. 2003. Restricted delaunay triangulations and normal cycle. In Proceedings of the 19th annual symposium on computational geometry, ACM Press, 312–321. Google ScholarDigital Library
8. Guggenheimer, H. 1963. Differential Geometry. McGraw-Hill, New York.Google Scholar
9. Guskov, I., Sweldens, W., and Schröder, P. 1999. Multiresolution signal processing for meshes. In Proceedings of ACM SIGGRAPH 99, ACM Press/Addison-Wesley Publishing Co., 325–334. Google ScholarDigital Library
10. Kobbelt, L., Campagna, S., Vorsatz, J., and Seidel, H.-P. 1998. Interactive multi-resolution modeling on arbitrary meshes. In Proceedings of ACM SIGGRAPH 98, ACM Press, 105-114. Google ScholarDigital Library
11. Lee, S. 1999. Interactive multiresolution editing of arbitrary meshes. Computer Graphics Forum (Proceedings of Eurographics 1999) 18, 3, 73–82.Google Scholar
12. Lipman, Y., Sorkine, O., Cohen-Or, D., Levin, D., Rössl, C., and Seidel, H.-P. 2004. Differential coordinates for interactive mesh editing. In Proceedings of Shape Modeling International, IEEE Computer Society Press, 181–190. Google ScholarDigital Library
13. Lipman, Y. 2004. Differential geometry of piecewise-linear surfaces. Tech. rep., Tel Aviv University, December.Google Scholar
14. Meek, D. S., and Walton, D. J. 2000. On surface normal and Gaussian curvature approximations given data sampled from a smooth surface. Computer Aided Geometric Design 17, 6, 521–543. Google ScholarDigital Library
15. Meyer, M., Desbrun, M., Schröder, P., and Barr, A. H. 2002. Discrete differential-geometry operators for triangulated 2-manifolds. In Proceedings of VisMath.Google Scholar
16. O’Neill, B. 1969. Elementary Differential Geometry. Academic Press, New York.Google Scholar
17. Sederberg, T. W., Gao, P., Wang, G., and Mu, H. 1993. 2-D shape blending: an intrinsic solution to the vertex path problem. In Proceedings of ACM SIGGRAPH 93, 15–18. Google ScholarDigital Library
18. Sheffer, A., and Kraevoy, V. 2004. Pyramid coordinates for morphing and deformation. In Proceedings of 2nd International Symposium on 3D Data Processing, Visualization, and Transmission, IEEE Computer Society Press, 68–75. Google ScholarDigital Library
19. Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rössl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Proceedings of the Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, Eurographics Association, 179–188. Google ScholarDigital Library
20. Stoker, J. J. 1989. Differential Geometry. Wiley, New York.Google Scholar
21. Toledo, S. 2003. TAUCS: A Library of Sparse Linear Solvers, version 2.2. Tel-Aviv University, Available online at http://www.tau.ac.il/~stoledo/taucs/, Sept.Google Scholar
22. Xu, D., Zhang, H., Wang, Q., and Bao, H. 2005. Poisson shape interpolation. In ACM Symposium on Solid and Physical Modeling, to appear. Google ScholarDigital Library
23. Yu, Y., Zhou, K., Xu, D., Shi, X., Bao, H., Guo, B., and Shum, H.-Y. 2004. Mesh editing with Poisson-based gradient field manipulation. In Proceedings of ACM SIGGRAPH 2004, ACM Press, 641–648. Google ScholarDigital Library
24. Zayer, R., Rössl, C., Karni, Z., and Seidel, H.-P. 2005. Harmonic guidance for surface deformation. In Computer Graphics Forum, Proceedings of Eurographics 2005, to appear.Google Scholar
25. Zorin, D., Schröder, P., and Sweldens, W. 1997. Interactive multiresolution mesh editing. In Proceedings of ACM SIGGRAPH 97, ACM Press/Addison-Wesley Publishing Co., 259–268. Google ScholarDigital Library