“Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays” by Wetzstein, Lanman, Heidrich and Raskar

  • ©Gordon Wetzstein, Douglas Lanman, Wolfgang Heidrich, and Ramesh Raskar

Conference:


Type(s):


Title:

    Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays

Presenter(s)/Author(s):



Abstract:


    We develop tomographic techniques for image synthesis on displays composed of compact volumes of light-attenuating material. Such volumetric attenuators recreate a 4D light field or high-contrast 2D image when illuminated by a uniform backlight. Since arbitrary oblique views may be inconsistent with any single attenuator, iterative tomographic reconstruction minimizes the difference between the emitted and target light fields, subject to physical constraints on attenuation. As multi-layer generalizations of conventional parallax barriers, such displays are shown, both by theory and experiment, to exceed the performance of existing dual-layer architectures. For 3D display, spatial resolution, depth of field, and brightness are increased, compared to parallax barriers. For a plane at a fixed depth, our optimization also allows optimal construction of high dynamic range displays, confirming existing heuristics and providing the first extension to multiple, disjoint layers. We conclude by demonstrating the benefits and limitations of attenuation-based light field displays using an inexpensive fabrication method: separating multiple printed transparencies with acrylic sheets.

References:


    1. Agocs, et al. 2006. A large scale interactive holographic display. In IEEE Virtual Reality, 311–312. Google Scholar
    2. Akeley, K., Watt, S. J., Girshick, A. R., and Banks, M. S. 2004. A stereo display prototype with multiple focal distances. ACM Trans. Graph. 23, 804–813. Google ScholarDigital Library
    3. Barnum, P. C., Narasimhan, S. G., and Kanade, T. 2010. A multi-layered display with water drops. ACM Trans. Graph. 29, 76:1–76:7. Google ScholarDigital Library
    4. Bell, G. P., Craig, R., Paxton, R., Wong, G., and Galbraith, D. 2008. Beyond flat panels: Multi-layered displays with real depth. SID Digest 39, 1, 352–355.Google ScholarCross Ref
    5. Bell, G. P., Engel, G. D., Searle, M. J., and Evanicky, D., 2010. Method to control point spread function of an image. U.S. Patent 7,742,239.Google Scholar
    6. Blanche, P.-A., et al. 2010. Holographic 3-d telepresence using large-area photorefractive polymer. Nature 468, 80–83.Google ScholarCross Ref
    7. Blundell, B., and Schwartz, A. 1999. Volumetric Three-Dimensional Display Systems. Wiley-IEEE Press. Google Scholar
    8. Bracewell, R. N., and Riddle, A. C. 1967. Inversion of fan-beam scans in radio astronomy. Astrophysical Journal 150, 427–434.Google ScholarCross Ref
    9. Chai, J.-X., Tong, X., Chan, S.-C., and Shum, H.-Y. 2000. Plenoptic sampling. In ACM SIGGRAPH, 307–318. Google Scholar
    10. Chaudhury, K. N., Muñoz-Barrutia, A., and Unser, M. 2010. Fast space-variant elliptical filtering using box splines. IEEE Trans. Image 19, 9, 2290–2306. Google ScholarCross Ref
    11. Coleman, T., and Li, Y. 1996. A reflective newton method for minimizing a quadratic function subject to bounds on some of the variables. SIAM Journal on Optimization 6, 4, 1040–1058. Google ScholarDigital Library
    12. Cossairt, O. S., Napoli, J., Hill, S. L., Dorval, R. K., and Favalora, G. E. 2007. Occlusion-capable multiview volumetric three-dimensional display. Applied Optics 46, 8, 1244–1250.Google ScholarCross Ref
    13. Disney, W. E., 1940. Art of animation. U.S. Patent 2,201,689.Google Scholar
    14. Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating spatially-varying subsurface scattering. ACM Trans. Graph. 29, 62:1–62:10. Google ScholarDigital Library
    15. Drebin, R. A., Carpenter, L., and Hanrahan, P. 1988. Volume rendering. ACM SIGGRAPH 22, 65–74. Google ScholarDigital Library
    16. Favalora, G. E. 2005. Volumetric 3D displays and application infrastructure. IEEE Computer 38, 37–44. Google ScholarDigital Library
    17. Gotoda, H. 2010. A multilayer liquid crystal display for autostereoscopic 3D viewing. In SPIE-IS&T Stereoscopic Displays and Applications XXI, vol. 7524, 1–8.Google Scholar
    18. Hašan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. ACM Trans. Graph. 29, 61:1–61:10. Google ScholarDigital Library
    19. Hecht, E. 2001. Optics. Addison Wesley.Google Scholar
    20. Herman, G. T. 1995. Image reconstruction from projections. Real-Time Imaging 1, 1, 3–18. Google ScholarDigital Library
    21. Ives, F. E., 1903. Parallax stereogram and process of making same. U.S. Patent 725,567.Google Scholar
    22. Jacobs, A., et al. 2003. 2D/3D switchable displays. Sharp Technical Journal, 4, 1–5.Google Scholar
    23. Jones, A., McDowall, I., Yamada, H., Bolas, M., and Debevec, P. 2007. Rendering for an interactive 360° light field display. ACM Trans. Graph. 26, 40:1–40:10. Google ScholarDigital Library
    24. Kak, A. C., and Slaney, M. 2001. Principles of Computerized Tomographic Imaging. Society for Industrial Mathematics. Google Scholar
    25. Kanolt, C. W., 1918. Photographic method and apparatus. U.S. Patent 1,260,682.Google Scholar
    26. Klug, M., Holzbach, M., and Ferdman, A., 2001. Method and apparatus for recording one-step, full-color, full-parallax, holographic stereograms. U.S. Patent 6,330,088.Google Scholar
    27. Kooi, F. L., and Toet, A. 2003. Additive and subtractive transparent depth displays. In SPIE Enhanced and Synthetic Vision, vol. 5081, 58–65.Google Scholar
    28. Lanman, D., Hirsch, M., Kim, Y., and Raskar, R. 2010. Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization. ACM Trans. Graph. 29, 163:1–163:10. Google ScholarDigital Library
    29. Levoy, M., and Hanrahan, P. 1996. Light Field Rendering. In ACM SGGRAPH, 31–42. Google Scholar
    30. Lippmann, G. 1908. Épreuves réversibles donnant la sensation du relief. Journal of Physics 7, 4, 821–825.Google Scholar
    31. Lipton, L. 1982. Foundations of the Stereoscopic Cinema. Van Nostrand Reinhold.Google Scholar
    32. Loukianitsa, A., and Putilin, A. N. 2002. Stereodisplay with neural network image processing. In SPIE-IT&T Stereoscopic Displays and Virtual Reality Systems IX, vol. 4660, 207–211.Google ScholarCross Ref
    33. Maeda, H., Hirose, K., Yamashita, J., Hirota, K., and Hirose, M. 2003. All-around display for video avatar in real world. In IEEE/ACM ISMAR, 288–289. Google Scholar
    34. Matusik, W., Ajdin, B., Gu, J., Lawrence, J., Lensch, H. P. A., Pellacini, F., and Rusinkiewicz, S. 2009. Printing spatially-varying reflectance. ACM Trans. Graph. 28, 128:1–128:9. Google ScholarDigital Library
    35. Mitra, N. J., and Pauly, M. 2009. Shadow art. ACM Trans. Graph. 28, 156:1–156:7. Google ScholarDigital Library
    36. Nayar, S., and Anand, V. 2007. 3D display using passive optical scatterers. IEEE Computer Magazine 40, 7, 54–63. Google ScholarDigital Library
    37. Perlin, K., and Han, J. Y., 2006. Volumetric display with dust as the participating medium. U.S. Patent 6,997,558.Google Scholar
    38. Putilin, A. N., and Loukianitsa, A., 2006. Visualization of three dimensional images and multi aspect imaging. U.S. Patent 6,985,290.Google Scholar
    39. Reinhard, E., Ward, G., Debevec, P., Pattanaik, S., Heidrich, W., and Myszkowski, K. 2010. High Dynamic Range Imaging: Acquisition, Display, and Image-Based Lighting. Morgan Kaufmann.Google Scholar
    40. Sabella, P. 1988. A rendering algorithm for visualizing 3D scalar fields. ACM SIGGRAPH 22, 51–58. Google ScholarDigital Library
    41. Sagi, O., 2009. PolyJet Matrix Technology: A new direction in 3D printing. http://www.objet.com, June.Google Scholar
    42. Seetzen, H., Heidrich, W., Stuerzlinger, W., Ward, G., Whitehead, L., Trentacoste, M., Ghosh, A., and Vorozcovs, A. 2004. High dynamic range display systems. ACM Trans. Graph. 23, 3, 760–768. Google ScholarDigital Library
    43. Slinger, C., Cameron, C., and Stanley, M. 2005. Computer-generated holography as a generic display technology. Computer 38, 8, 46–53. Google ScholarDigital Library
    44. Sullivan, A. 2003. A solid-state multi-planar volumetric display. In SID Digest, vol. 32, 207–211.Google Scholar
    45. Suyama, S., Ohtsuka, S., Takada, H., Uehira, K., and Sakai, S. 2004. Apparent 3-D image perceived from luminance-modulated two 2-D images displayed at different depths. Vision Research 44, 8, 785–793.Google ScholarCross Ref
    46. Yendo, T., Kawakami, N., and Tachi, S. 2005. Seelinder: the cylindrical lightfield display. In ACM SIGGRAPH Emerging Technologies. Google Scholar
    47. Z Corporation, 2010. ZPrinter 650. http://www.zcorp.com, January.Google Scholar
    48. Zwicker, M., Matusik, W., Durand, F., and Pfister, H. 2006. Antialiasing for automultiscopic 3D displays. In Eurographics Symposium on Rendering. Google Scholar


ACM Digital Library Publication:



Overview Page: