“Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Coupling” by Gissler, Peer, Band, Bender and Teschner

  • ©Christoph Gissler, Andreas Peer, Stefan Band, Jan Bender, and Matthias Teschner

Conference:


Type(s):


Title:

    Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Coupling

Session/Category Title:   Fluids I


Presenter(s)/Author(s):



Abstract:


    We present a strong fluid-rigid coupling for Smoothed Particle Hydrodynamics (SPH) fluids and rigid bodies with particle-sampled surfaces. The approach interlinks the iterative pressure update at fluid particles with a second SPH solver that computes artificial pressure at rigid-body particles. The introduced SPH rigid-body solver models rigid-rigid contacts as artificial density deviations at rigid-body particles. The corresponding pressure is iteratively computed by solving a global formulation that is particularly useful for large numbers of rigid-rigid contacts. Compared to previous SPH coupling methods, the proposed concept stabilizes the fluid-rigid interface handling. It significantly reduces the computation times of SPH fluid simulations by enabling larger time steps. Performance gain factors of up to 58 compared to previous methods are presented. We illustrate the flexibility of the presented fluid-rigid coupling by integrating it into DFSPH, IISPH, and a recent SPH solver for highly viscous fluids. We further show its applicability to a recent SPH solver for elastic objects. Large scenarios with up to 90M particles of various interacting materials and complex contact geometries with up to 90k rigid-rigid contacts are shown. We demonstrate the competitiveness of our proposed rigid-body solver by comparing it to Bullet.

References:


    1. S. Adami, X. Y. Hu, and N. A. Adams. 2012. A generalized wall boundary condition for smoothed particle hydrodynamics. J. Comput. Phys. 231, 21 (2012), 7057–7075.
    2. Muzaffer Akbay, Nicholas Nobles, Victor Zordan, and Tamar Shinar. 2018. An extended partitioned method for conservative solid-fluid coupling. ACM Trans. Graph. 37, 4 (2018), 86:1–86:12.
    3. Nadir Akinci, Gizem Akinci, and Matthias Teschner. 2013a. Versatile surface tension and adhesion for SPH fluids. ACM Trans. Graph. 32, 6 (2013), 182:1–182:8.
    4. Nadir Akinci, Jens Cornelis, Gizem Akinci, and Matthias Teschner. 2013b. Coupling elastic solids with smoothed particle hydrodynamics fluids. Comput. Animat. Virt. Worlds 24, 3–4 (2013), 195–203.
    5. Nadir Akinci, Markus Ihmsen, Gizem Akinci, Barbara Solenthaler, and Matthias Teschner. 2012. Versatile rigid-fluid coupling for incompressible SPH. ACM Trans. Graph. 31, 4 (2012), 62:1–62:8.
    6. Ryoichi Ando, Nils Thürey, and Chris Wojtan. 2015. A stream function solver for liquid simulations. ACM Trans. Graph. 34, 4 (2015), 53:1–53:9.
    7. Stefan Band, Christoph Gissler, Markus Ihmsen, Jens Cornelis, Andreas Peer, and Matthias Teschner. 2018a. Pressure boundaries for implicit incompressible SPH. ACM Trans. Graph. 37, 2 (Feb. 2018), 14:1–14:11.
    8. Stefan Band, Christoph Gissler, Andreas Peer, and Matthias Teschner. 2018b. MLS pressure boundaries for divergence-free and viscous SPH fluids. Comput. Graph. 76 (2018), 37–46.
    9. Stefan Band, Christoph Gissler, and Matthias Teschner. 2017. Moving least squares boundaries for SPH fluids. In Virtual Reality Interactions and Physical Simulations. The Eurographics Association.
    10. Christopher Batty, Florence Bertails, and Robert Bridson. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph. 26, 3 (2007).
    11. Markus Becker, Hendrik Tessendorf, and Matthias Teschner. 2009. Direct forcing for lagrangian rigid-fluid coupling. IEEE Trans. Visual. Comput. Graph. 15, 3 (2009), 493–503.
    12. Nathan Bell, Yizhou Yu, and Peter J. Mucha. 2005. Particle-based simulation of granular materials. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 77–86.
    13. Jan Bender, Kenny Erleben, and Jeff Trinkle. 2014. Interactive simulation of rigid body dynamics in computer graphics. Comput. Graph. Forum 33, 1 (2014), 246–270.
    14. Jan Bender and Dan Koschier. 2017. Divergence-free SPH for incompressible and viscous fluids. IEEE Trans. Visual. Comput. Graph. 23, 3 (2017), 1193–1206.
    15. Jan Bender, Dan Koschier, Tassilo Kugelstadt, and Marcel Weiler. 2017. A micropolar material model for turbulent SPH fluids. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 4:1–4:8.
    16. Mark Carlson, Peter J. Mucha, and Greg Turk. 2004. Rigid fluid: Animating the interplay between rigid bodies and fluid. ACM Trans. Graph. 23, 3 (2004), 377–384.
    17. Nuttapong Chentanez, Tolga G. Goktekin, Bryan E. Feldman, and James F. O’Brien. 2006. Simultaneous coupling of fluids and deformable bodies. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 83–89.
    18. Nuttapong Chentanez and Matthias Müller. 2010. Real-time simulation of large bodies of water with small scale details. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 197–206.
    19. Simon Clavet, Philippe Beaudoin, and Pierre Poulin. 2005. Particle-based viscoelastic fluid simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 219–228.
    20. Erwin Coumans. 2018. Bullet physics library. Retrieved from http://bulletphysics.org/.
    21. Fernando de Goes, Corentin Wallez, Jin Huang, Dmitry Pavlov, and Mathieu Desbrun. 2015. Power particles: An incompressible fluid solver based on power diagrams. ACM Trans. Graph. 34, 4 (2015), 50–1.
    22. Mathieu Desbrun, Marie-Paule Cani, et al. 1996. Smoothed particles: A new paradigm for animating highly deformable bodies. In Proceedings of the Eurographics Workshop on Computer Animation and Simulation, Vol. 96. Springer, 61–76.
    23. Crispin Deul, Patrick Charrier, and Jan Bender. 2014. Position-based rigid body dynamics. Comput. Animat. Virt. Worlds 27, 2 (2014), 103–112.
    24. R. Elliot English, Linhai Qiu, Yue Yu, and Ronald Fedkiw. 2013. Chimera grids for water simulation. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 85–94.
    25. Makoto Fujisawa and Kenjiro T. Miura. 2015. An efficient boundary handling with a modified density calculation for SPH. Comput. Graph. Forum 34, 7 (2015), 155–162. Retrieved from arXiv:https://onlinelibrary.wiley.com/.
    26. Dan Gerszewski, Ladislav Kavan, Peter-Pike Sloan, and Adam W. Bargteil. 2015. Basis enrichment and solid-fluid coupling for model-reduced fluid simulation. Comput. Animat. Virt. Worlds 26, 2 (2015), 109–117.
    27. Robert A. Gingold and Joseph J. Monaghan. 1977. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Month. Notices Roy. Astron. Soc. 181, 3 (1977), 375–389.
    28. Christoph Gissler, Stefan Band, Andreas Peer, Markus Ihmsen, and Matthias Teschner. 2017. Generalized drag force for particle-based simulations. Comput. Graph. 69 (2017), 1–11.
    29. Jón Tómas Grétarsson, Nipun Kwatra, and Ronald Fedkiw. 2011. Numerically stable fluid-structure interactions between compressible flow and solid structures. J. Comput. Phys. 230, 8 (2011), 3062–3084.
    30. Eran Guendelman, Andrew Selle, Frank Losasso, and Ronald Fedkiw. 2005. Coupling water and smoke to thin deformable and rigid shells. ACM Trans. Graph. 24, 3 (2005), 973–981.
    31. Takahiro Harada. 2007. Real-time rigid body simulation on GPUs. In GPU Gems 3, Hubert Nguyen (Ed.). Addison-Wesley Professional, Chapter 29, 611–632.
    32. Xiaowei He, Ning Liu, Sheng Li, Hongan Wang, and Guoping Wang. 2012. Local poisson SPH for viscous incompressible fluids. Comput. Graph. Forum 31, 6 (2012), 1948–1958.
    33. Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias Teschner. 2014a. Implicit incompressible SPH. IEEE Trans. Visual. Comput. Graph. 20, 3 (2014), 426–435.
    34. Markus Ihmsen, Jens Orthmann, Barbara Solenthaler, Andreas Kolb, and Matthias Teschner. 2014b. SPH fluids in computer graphics. In Eurographics (State of the Art Reports). The Eurographics Association.
    35. Richard Keiser, Bart Adams, Philip Dutré, Leonidas Guibas, and Mark Pauly. 2006. Multiresolution particle-based fluids. Technical Report 520. Department of Computer Science, ETH Zurich.
    36. Richard Keiser, Bart Adams, Dominique Gasser, Paolo Bazzi, Philip Dutre, and Markus Gross. 2005. A unified Lagrangian approach to solid-fluid animation. In Proceedings of the Eurographics/IEEE VGTC Symposium Point-Based Graphics. 125–148.
    37. Bryan M. Klingner, Bryan E. Feldman, Nuttapong Chentanez, and James F. O’Brien. 2006. Fluid animation with dynamic meshes. ACM Trans. Graph. 25, 3 (2006), 820–825.
    38. Dan Koschier and Jan Bender. 2017. Density maps for improved SPH boundary handling. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 1:1–1:10.
    39. Nipun Kwatra, Chris Wojtan, Mark Carlson, Irfan E. Essa, Peter J. Mucha, and Greg Turk. 2010. Fluid simulation with articulated bodies. IEEE Trans. Visual. Comput. Graph. 16, 1 (2010), 70–80.
    40. Michael Lentine, J. T. Gretarsson, Craig Schroeder, Avi Robinson-Mosher, and Ronald Fedkiw. 2011. Creature control in a fluid environment. IEEE Trans. Visual. Comput. Graph. 17, 5 (2011), 682–693.
    41. Wenlong Lu, Ning Jin, and Ronald P. Fedkiw. 2016. Two-way coupling of fluids to reduced deformable bodies. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Ladislav Kavan and Chris Wojtan (Eds.). The Eurographics Association.
    42. Leon B. Lucy. 1977. A numerical approach to the testing of the fission hypothesis. Astron. J. 82 (1977), 1013–1024.
    43. Miles Macklin and Matthias Müller. 2013. Position based fluids. ACM Trans. Graph. 32, 4 (2013), 104.
    44. Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim. 2014. Unified particle physics for real-time applications. ACM Trans. Graph. 33, 4 (2014), 153:1–153:12.
    45. Brian Vincent Mirtich. 1996. Impulse-based Dynamic Simulation of Rigid Body Systems. Ph.D. Dissertation.
    46. Joseph J. Monaghan. 1994. Simulating free surface flows with SPH. J. Comput. Phys. 110, 2 (1994), 399–406.
    47. Joseph J. Monaghan. 2005. Smoothed particle hydrodynamics. Rep. Progr. Phys. 68, 8 (2005), 1703.
    48. Joseph J. Monaghan. 2012. Smoothed particle hydrodynamics and its diverse applications. Ann. Rev. Fluid Mech. 44 (2012), 323–346.
    49. Joseph P. Morris, Patrick J. Fox, and Yi Zhu. 1997. Modeling low reynolds number incompressible flows using SPH. J. Comput. Phys. 136, 1 (1997), 214–226.
    50. Matthias Müller, David Charypar, and Markus Gross. 2003. Particle-based fluid simulation for interactive applications. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 154–159.
    51. Matthias Müller, Simon Schirm, Matthias Teschner, Bruno Heidelberger, and Markus Gross. 2004. Interaction of fluids with deformable solids. Comput. Animat. Virtual Worlds 15, 3–4 (2004), 159–171.
    52. G. Oger, M. Doring, B. Alessandrini, and P. Ferrant. 2006. Two-dimensional SPH simulations of wedge water entries. J. Comput. Phys. 213, 2 (2006), 803–822.
    53. Seungtaik Oh, Younghee Kim, and Byung-Seok Roh. 2009. Impulse-based rigid body interaction in SPH. Comput. Animat. Virtual Worlds 20, 2–3 (2009), 215–224.
    54. Saket Patkar, Mridul Aanjaneya, Wenlong Lu, Michael Lentine, and Ronald Fedkiw. 2016. Towards positivity preservation for monolithic two-way solid-fluid coupling. J. Comput. Phys. 312 (2016), 82–114.
    55. Andreas Peer, Christoph Gissler, Stefan Band, and Matthias Teschner. 2018. An implicit SPH formulation for incompressible linearly elastic solids. Comput. Graph. Forum 37, 6 (2018), 135–148. Retrieved from arXiv:https://onlinelibrary.wiley.com/.
    56. Andreas Peer, Markus Ihmsen, Jens Cornelis, and Matthias Teschner. 2015. An implicit viscosity formulation for SPH fluids. ACM Trans. Graph. 34, 4 (2015), 114:1–114:10.
    57. Daniel J. Price. 2012. Smoothed particle hydrodynamics and magnetohydrodynamics. J. Comput. Phys. 231, 3 (2012), 759–794.
    58. Avi Robinson-Mosher, R. Elliot English, and Ronald Fedkiw. 2009. Accurate tangential velocities for solid fluid coupling. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 227–236.
    59. Avi Robinson-Mosher, Craig Schroeder, and Ronald Fedkiw. 2011. A symmetric positive definite formulation for monolithic fluid structure interaction. J. Comput. Phys. 230, 4 (2011), 1547–1566.
    60. Avi Robinson-Mosher, Tamar Shinar, Jon Gretarsson, Jonathan Su, and Ronald Fedkiw. 2008. Two-way coupling of fluids to rigid and deformable solids and shells. ACM Trans. Graph. 27, 3 (2008), 46:1–46:9.
    61. Hagit Schechter and Robert Bridson. 2012. Ghost SPH for animating water. ACM Trans. Graph. 31, 4 (2012), 61.
    62. Barbara Solenthaler, Peter Bucher, Nuttapong Chentanez, Matthias Müller, and Markus Gross. 2011. SPH based shallow water simulation. In Virtual Reality Interactions and Physical Simulations. Eurographics Association.
    63. Barbara Solenthaler and Renato Pajarola. 2008. Density contrast SPH interfaces. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 211–218.
    64. Barbara Solenthaler and Renato Pajarola. 2009. Predictive-corrective incompressible SPH. ACM Trans. Graph. 28, 3 (2009), 40:1–40:6.
    65. Barbara Solenthaler, Jürg Schläfli, and Renato Pajarola. 2007. A unified particle model for fluid-solid interactions. Comput. Animat. Virtual Worlds 18, 1 (2007), 69–82.
    66. Jos Stam and Eugene Fiume. 1995. Depicting fire and other gaseous phenomena using diffusion processes. In Proceedings of the ACM Conference on Computer Graphics and Interactive Techniques. ACM, 129–136.
    67. Tetsuya Takahashi, Yoshinori Dobashi, Tomoyuki Nishita, and Ming C. Lin. 2017. An efficient hybrid incompressible SPH solver with interface handling for boundary conditions. Comput. Graph. Forum (2017), 1–12.
    68. Tetsuya Takahashi and Ming C. Lin. 2016. A multilevel SPH solver with unified solid boundary handling. In Pacific Graphics. Eurographics Association, 517–526.
    69. Jie Tan, Yuting Gu, Greg Turk, and C. Karen Liu. 2011. Articulated swimming creatures. ACM Trans. Graph. 30, 4 (2011), 58:1–58:12.
    70. Nils Thürey, Klaus Iglberger, and Ulrich Rüde. 2006. Free surface flows with moving and deforming objects with LBM. In Vision, Modeling, and Visualization. Akademische Verlagsgesellschaft Aka GmbH, 193–200.
    71. Nils Thürey, Matthias Müller-Fischer, Simon Schirm, and Markus Gross. 2007. Real-time breaking waves for shallow water simulations. In Pacific Graphics. IEEE, 39–46.
    72. Richard Tonge, Feodor Benevolenski, and Andrey Voroshilov. 2012. Mass splitting for jitter-free parallel rigid body simulation. ACM Trans. Graph. 31, 4 (2012), 105:1–105:8.
    73. Mauricio Vines, Ben Houston, Jochen Lang, and Won-Sook Lee. 2014. Vortical inviscid flows with two-way solid-fluid coupling. IEEE Trans. Visual. Comput. Graph. 20, 2 (2014), 303–315.
    74. Rene Winchenbach, Hendrik Hochstetter, and Andreas Kolb. 2017. Infinite continuous adaptivity for incompressible SPH. ACM Trans. Graph. 36, 4 (2017), 102:1–102:10.
    75. Hongyi Xu, Yili Zhao, and Jernej Barbic. 2014. Implicit multibody penalty-based distributed contact. IEEE Trans. Visual. Comput. Graph. 20, 9 (2014), 1266–1279.
    76. X. Yan, C-F. Li, X-S. Chen, and S-M. Hu. 2018. MPM simulation of interacting fluids and solids. Comput. Graph. Forum 37, 8 (2018), 183–193.
    77. Omar Zarifi and Christopher Batty. 2017. A positive-definite cut-cell method for strong two-way coupling between fluids and deformable bodies. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation. ACM, 7:1–7:11.

ACM Digital Library Publication:



Overview Page: