“Interactive relighting with dynamic BRDFs” by Sun, Zhou, Chen, Lin, Shi, et al. …

  • ©Xin Sun, Kun Zhou, Yanyun Chen, Stephen Lin, Jiaoying Shi, and Baining Guo




    Interactive relighting with dynamic BRDFs



    We present a technique for interactive relighting in which source radiance, viewing direction, and BRDFs can all be changed on the fly. In handling dynamic BRDFs, our method efficiently accounts for the effects of BRDF modification on the reflectance and incident radiance at a surface point. For reflectance, we develop a BRDF tensor representation that can be factorized into adjustable terms for lighting, viewing, and BRDF parameters. For incident radiance, there exists a non-linear relationship between indirect lighting and BRDFs in a scene, which makes linear light transport frameworks such as PRT unsuitable. To overcome this problem, we introduce precomputed transfer tensors (PTTs) which decompose indirect lighting into precomputable components that are each a function of BRDFs in the scene, and can be rapidly combined at run time to correctly determine incident radiance. We additionally describe a method for efficient handling of high-frequency specular reflections by separating them from the BRDF tensor representation and processing them using precomputed visibility information. With relighting based on PTTs, interactive performance with indirect lighting is demonstrated in applications to BRDF animation and material tuning.


    1. Ashikhmin, M., Premoze, S., and Shirley, P. 2000. A microfacet-based BRDF generator. In SIGGRAPH ’00, 65–74. Google ScholarDigital Library
    2. Aupperle, L., and Hanrahan, P. 1993. A hierarchical illumination algorithm for surfaces with glossy reflection. In SIGGRAPH ’93, 155–162. Google ScholarDigital Library
    3. Ben-Artzi, A., Overbeck, R., and Ramamoorthi, R. 2006. Real-time brdf editing in complex lighting. ACM Trans. Graph. 25, 3, 945–954. Google ScholarDigital Library
    4. Blinn, J. F. 1977. Models of light reflection for computer synthesized pictures. In SIGGRAPH ’77, 192–198. Google ScholarDigital Library
    5. Cook, R. L., and Torrance, K. E. 1981. A reflectance model for computer graphics. In SIGGRAPH ’81, 307–316. Google ScholarDigital Library
    6. Dana, K. J., van Ginneken, B., Nayar, S. K., and Koenderink, J. J. 1999. Reflectance and texture of real-world surfaces. ACM Trans. Graph. 18, 1, 1–34. Google ScholarDigital Library
    7. Dempster, A. P., Laird, N. M., and Rubin, D. B. 1977. Maximum-likelihood from incomplete data via the em algorithm. J. Royal Statistical Society 39, 1, 1–38.Google Scholar
    8. Dorsey, J., Arvo, J., and Greenberg, D. 1995. Interactive design of complex time dependent lighting. IEEE Comp. Graph. and Appl. 15, 2, 26–36. Google ScholarDigital Library
    9. Forsyth, D. A., and Zisserman, A. P. 1991. Reflections on shading. IEEE Trans. Pattern Analysis and Machine Intelligence 13, 7, 671–679. Google ScholarDigital Library
    10. Gershbein, R., and Hanrahan, P. 2000. A fast relighting engine for interactive cinematic lighting design. In SIGGRAPH ’00, 353–358. Google ScholarDigital Library
    11. Green, P., Kautz, J., Matusik, W., and Durand, F. 2006. View-dependent precomputed light transport using nonlinear gaussian function approximations. In Symp. I3D. Google ScholarDigital Library
    12. Hašan, M., Pellacini, F., and Bala, K. 2006. Direct-to-indirect transfer for cinematic relighting. ACM Trans. Graph. 25, 3, 1089–1097. Google ScholarDigital Library
    13. Kajiya, J. T. 1985. Anisotropic reflection models. In SIGGRAPH ’85, 15–21. Google ScholarDigital Library
    14. Kajiya, J. T. 1986. The rendering equation. In SIGGRAPH ’86, 143–150. Google ScholarDigital Library
    15. Kautz, J., and McCool, M. D. 1999. Interactive rendering with arbitrary brdfs using separable approximations. In Eurographics Rendering Workshop, 281–292. Google ScholarCross Ref
    16. Kristensen, A. W., Akenine-Müller, T., and Jensen, H. W. 2005. Precomputed local radiance transfer for real-time lighting design. ACM Trans. Graph. 24, 3, 1208–1215. Google ScholarDigital Library
    17. Lathauwer, L. D., Moor, B. D., and Vandewalle, J. 2000. On the best rank-1 and rank-(r
    2,. . .,rn) approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21, 4, 1324–1342. Google ScholarDigital Library
    18. Liu, X., Sloan, P., Shum, H.-Y., and Snyder, J. 2004. All-frequency precomputed radiance transfer for glossy objects. In Eurographics Symp. Rendering, 337–344. Google ScholarCross Ref
    19. Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. A data-driven reflectance model. In SIGGRAPH ’03, 759–769. Google ScholarDigital Library
    20. Matusik, W., Pfister, H., Brand, M., and McMillan, L. 2003. Efficient isotropic brdf measurement. In Eurographics Symp. Rendering, 241–247. Google ScholarDigital Library
    21. McCool, M. D., Ang, J., and Ahmad, A. 2001. Homomorphic factorization of brdfs for high-performance rendering. In SIGGRAPH ’01, 171–178. Google ScholarDigital Library
    22. Meyer, M., and Anderson, J. 2006. Statistical acceleration for animated global illumination. ACM Trans. Graph. 25, 3, 1075–1080. Google ScholarDigital Library
    23. Ng, R., Ramamoorthi, R., and Hanrahan, P. 2003. All-frequency shadows using non-linear wavelet lighting approximation. ACM Trans. Graph. 22, 3, 376–381. Google ScholarDigital Library
    24. Ng, R., Ramamoorthi, R., and Hanrahan, P. 2004. Triple product wavelet integrals for all-frequency relighting. ACM Trans. Graph. 23, 3, 477–487. Google ScholarDigital Library
    25. Ngan, A., Durand, F., and Matusik, W. 2005. Experimental analysis of brdf models. In Eurographics Symp. Rendering, 117–226. Google ScholarCross Ref
    26. Oren, M., and Nayar, S. K. 1994. Generalization of lambert’s reflectance model. In SIGGRAPH ’94, 239–246. Google ScholarDigital Library
    27. Pellacini, F., Vidimce, K., Lefohn, A., Mohr, A., Leone, M., and Warren, J. 2005. Lpics: a hybrid hardware-accelerated relighting engine for computer cinematography. ACM Trans. Graph. 24, 3, 464–470. Google ScholarDigital Library
    28. Saito, T., and Takahashi, T. 1990. Comprehensible rendering of 3-d shapes. In SIGGRAPH ’90, 197–206. Google ScholarDigital Library
    29. Sloan, P.-P., Kautz, J., and Snyder, J. 2002. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In SIGGRAPH ’02, 527–536. Google ScholarDigital Library
    30. Sloan, P.-P., Hall, J., Hart, J., and Snyder, J. 2003. Clustered principal components for precomputed radiance transfer. ACM Trans. Graph. 22, 3, 382–391. Google ScholarDigital Library
    31. Tabellion, E., and Lamorlette, A. 2004. An approximate global illumination system for computer generated films. ACM Trans. Graph. 23, 3, 469–476. Google ScholarDigital Library
    32. Tsai, Y.-T., and Shih, Z.-C. 2006. All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation. ACM Trans. Graph. 25, 3, 967–976. Google ScholarDigital Library
    33. Vasilescu, M. A. O., and Terzopoulos, D. 2004. Tensor-textures: multilinear image-based rendering. In SIGGRAPH ’04, 336–342. Google ScholarDigital Library
    34. Wang, R., Tran, J., and Luebke, D. 2004. All-frequency relighting of non-diffuse objects using separable brdf approximation. In Eurographics Symp. Rendering, 345–354. Google ScholarCross Ref
    35. Wang, H., Wu, Q., Shi, L., Yu, Y., and Ahuja, N. 2005. Out-of-core tensor approximation of high dimensional visual data. In SIGGRAPH ’05, 527–535. Google ScholarDigital Library
    36. Wang, R., Tran, J., and Luebke, D. 2006. All-frequency relighting of glossy objects. ACM Trans. Graph. 25, 2, 293–318. Google ScholarDigital Library
    37. Ward, G. J. 1992. Measuring and modeling anisotropic reflection. In SIGGRAPH ’92, 265–272. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: