“Interactive modeling of topologically complex geometric detail” by Peng, Kristjansson and Zorin

  • ©Jianbo Peng, Daniel Kristjansson, and Denis Zorin




    Interactive modeling of topologically complex geometric detail



    Volume textures aligned with a surface can be used to add topologically complex geometric detail to objects in an efficient way, while retaining an underlying simple surface structure.Adding a volume texture to a surface requires more than a conventional two-dimensional parameterization: a part of the space surrounding the surface has to be parameterized. Another problem with using volume textures for adding geometric detail is the difficulty in rendering implicitly represented surfaces, especially when they are changed interactively.In this paper we present algorithms for constructing and rendering volume-textured surfaces. We demonstrate a number of interactive operations that these algorithms enable.


    1. AGARWALA, A. 1999. Volumetric Surface Sculpting. Master’s thesis, MIT.Google Scholar
    2. BARNES, J., AND HUT, P. 1986. A hierarchical O(N log N) force calculation algorithm. Nature 324, 446.Google ScholarCross Ref
    3. BERN, M., AND PLASSMANN, P. 2000. Mesh generation. In Handbook of computational geometry. North-Holland, Amsterdam, 291–332.Google Scholar
    4. BIERMANN, H., MARTIN, I., BERNARDINI, F., AND ZORIN, D. 2002. Cut-and-paste editing of multiresolution surfaces. In ACM Transactions on Graphics (SIGGRAPH 2002), vol. 21–3, 312–321. Google ScholarDigital Library
    5. BLOOMENTHAL, J., Ed. 1997. Introduction to implicit surfaces. Morgan Kaufmann. Google ScholarDigital Library
    6. CABRAL, B., CAM, N., AND FORAN, J. 1994. Accelerated volume rendering and tomographic reconstruction using texture mapping hardware. In Proceedings of SIGGRAPH 94, 91–98. Google ScholarDigital Library
    7. CARR, J. C., BEATSON, R. K., CHERRIE, J. B., MITCHELL, T. J., FRIGHT, W. R., MCCALLUM, B. C., AND EVANS, T. R. 2001. Reconstruction and representation of 3D objects with radial basis functions. In Proceedings of ACM SIGGRAPH 2001, 67–76. Google ScholarDigital Library
    8. CHERNYAEV, E. 1995. Marching cubes 33: Construction of topologically correct isosurfaces. Tech. Rep. CN/95-17, CERN.Google Scholar
    9. COHEN, J., VARSHNEY, A., MANOCHA, D., TURK, G., WEBER, H., AGARWAL, P., JR., F. P. B., AND WRIGHT, W. 1996. Simplification envelopes. In Proceedings of SIGGRAPH 96, 119–128. Google ScholarDigital Library
    10. CULLIP, T. J., AND NEUMANN, U. 1993. Accelerating volume reconstruction with 3D texturing hardware. Tech. Rep. TR93-027, University of North Carolina. Google ScholarDigital Library
    11. CUTLER, B., DORSEY, J., MCMILLAN, L., MÜLLER, M., AND JAGNOW, R. 2002. A procedural approach to authoring solid models. In ACM Transactions on Graphics (SIGGRAPH 2001), vol. 21-3, 302–311. Google ScholarDigital Library
    12. DIETRICH, S. 2000. Elevation maps. Tech. rep., NVIDIA Corporation.Google Scholar
    13. DORSEY, J., EDELMAN, A., LEGAKIS, J., JENSEN, H. W., AND PEDERSEN, H. K. 1999. Modeling and rendering of weathered stone. In Proceedings of ACM SIGGRAPH 99, 225–234. Google ScholarDigital Library
    14. EBERLY, D., GARDNER, R., MORSE, B., PIZER, S., AND SCHARLACH, C. 1994. Ridges for image analysis. Journal of Mathematical Imaging and Vision 4, 351–371. Google ScholarDigital Library
    15. FRISKEN, S. F., PERRY, R. N., ROCKWOOD, A. P., AND JONES, T. R. 2000. Adaptively sampled distance fields: A general representation of shape for computer graphics. In Proceedings of ACM SIGGRAPH 2000, 249–254. Google ScholarDigital Library
    16. HENSHAW, W. D. 1996. Automatic grid generation. In Acta numerica, 1996, vol. 5 of Acta Numer. Cambridge Univ. Press, Cambridge, 121–148.Google Scholar
    17. KAJIYA, J. T., AND KAY, T. L. 1989. Rendering fur with three dimensional textures. In Proceedings of the 16th annual conference on Computer graphics and interactive techniques (SIGGRAPH 89), 271–280. Google ScholarDigital Library
    18. KAUTZ, J., AND SEIDEL, H.-P. 2001. Hardware accelerated displacement mapping for image based rendering. In Graphics Interface 2001, 61–70. Google ScholarDigital Library
    19. LENGYEL, J. E., PRAUN, E., FINKELSTEIN, A., AND HOPPE, H. 2001. Real-time fur over arbitrary surfaces. In 2001 ACM Symposium on Interactive 3D Graphics, 227–232. Google ScholarDigital Library
    20. LENGYEL, J. 2000. Real-time hair. In Rendering Techniques 2000: 11th Eurographics Workshop on Rendering, Eurographics, 243–256. Google ScholarDigital Library
    21. LORENSEN, W. E., AND CLINE, H. E. 1987. Marching cubes: A high resolution 3D surface construction algorithm. In Computer Graphics (SIGGRAPH 87), vol. 21, 163–169. Google ScholarDigital Library
    22. MEYER, A., AND NEYRET, F. 1998. Interactive volumetric textures. In Eurographics Rendering Workshop 1998, Springer Wein, New York City, NY, G. Drettakis and N. Max, Eds., Eurographics, 157–168.Google ScholarCross Ref
    23. NEYRET, F. 1995. A general and multiscale model for volumetric textures. In Graphics Interface ’95, Canadian Human-Computer Communications Society, W. A. Davis and P. Prusinkiewicz, Eds., Canadian Information Processing Society, 83–91.Google Scholar
    24. NEYRET, F. 1998. Modeling animating and rendering complex scenes using volumetric textures. IEEE Transactions on Visualization and Computer Graphics 4, 1 (Jan.-Mar.), 55–70. Google ScholarDigital Library
    25. PASKO, A., ADZHIEV, V., SOURIN, A., AND SAVCHENKO, V. 1995. Function representation in geometric modeling: concepts, implementation and applications. The Visual Computer 11, 8, 429–446.Google ScholarCross Ref
    26. PIZER, S., BURBECK, C., COGGINS, J., FRITSCH, D., AND MORSE, B. 1994. Object shape before boundary shape: Scale-space medial axes. Journal of Mathematical Imaging and Vision 4, 303–313.Google ScholarCross Ref
    27. REZK-SALAMA, C., ENGEL, K., BAUER, M., GREINER, G., AND ERTL, T. 2000. Interactive volume rendering on standard pc graphics hardware using multi-textures and multi-stage rasterization. In 2000 SIGGRAPH / Eurographics Workshop on Graphics Hardware, 109–118. Google ScholarDigital Library
    28. RICCI, A. 1973. A constructive geometry for computer graphics. The Computer Journal 16, 2, 157–160.Google ScholarCross Ref
    29. ROCKWOOD, A. 1987. Blending surfaces in solid geometric modeling. PhD thesis, Cambridge University.Google Scholar
    30. SCHAUFLER, G. 1998. Per-object image warping with layered impostors. In 9th Eurographics Rendering Workshop, 145–156.Google ScholarCross Ref
    31. SETHIAN, J. A. 1994. Curvature flow and entropy conditions applied to grid generation. J. Comput. Phys. 115, 2, 440–454. Google ScholarDigital Library
    32. SETHIAN, J. 1999. Level Set Methods and Fast Marching Methods. Cambridge University Press. ISBN 0521645573.Google Scholar
    33. SIDDIQI, K., BOUIX, S., TANNENBAUM, A., AND ZUCKER, S. W. 1999. The hamilton-jacobi skeleton. In ICCV (2), 828–834. Google ScholarDigital Library
    34. STEINBERG, S., AND KNUPP, P. M. 1993. Fundamentals of Grid Generation. CRC Press.Google Scholar
    35. WANG, S. W., AND KAUFMAN, A. E. 1995. Volume sculpting. In Proceedings of the 1995 symposium on Interactive 3D graphics, ACM Press, 151–156. Google ScholarDigital Library
    36. WESTERMANN, R., AND ERTL, T. 1998. Efficiently using graphics hardware in volume rendering applications. In Proceedings of SIGGRAPH 98, 169–178. Google ScholarDigital Library
    37. WILSON, O., GELDER, A. V., AND WILHELMS, J. 1994. Direct volume rendering via 3D textures. Tech. Rep. UCSC-CRL-94-19, UCSC. Google ScholarDigital Library
    38. YEZZI, A., AND PRINCE, J. L. 2002. A PDE approach for thickness, correspondence, and gridding of annular tissues. In ECCV (4), Springer, vol. 2353 of Lecture Notes in Computer Science, 575–589. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: