“Interactive Generation of Human Animation with Deformable Motion Models” by Min, Chen and Chai

  • ©Jianyuan Min, Yen-Lin Chen, and Jinxiang Chai

Conference:


Type(s):


Title:

    Interactive Generation of Human Animation with Deformable Motion Models

Session/Category Title:   Editing Motion

Course Organizer(s):



Presenter(s)/Author(s):



Abstract:


    This article presents a new motion model deformable motion models for human motion modeling and synthesis. Our key idea is to apply statistical analysis techniques to a set of precaptured human motion data and construct a low-dimensional deformable motion model of the form x = M(α, γ), where the deformable parameters α and γ control the motion’s geometric and timing variations, respectively. To generate a desired animation, we continuously adjust the deformable parameters’ values to match various forms of user-specified constraints. Mathematically, we formulate the constraint-based motion synthesis problem in a Maximum A Posteriori (MAP) framework by estimating the most likely deformable parameters from the user’s input. We demonstrate the power and flexibility of our approach by exploring two interactive and easy-to-use interfaces for human motion generation: direct manipulation interfaces and sketching interfaces.

References:


    1. Arikan, O. and Forsyth, D. A. 2002. Interactive motion generation from examples. ACM Trans. Graph. 21, 3, 483–490. 
    2. Bishop, C. 1996. Neural Network for Pattern Recognition. Cambridge University Press. 
    3. Brand, M. and Hertzmann, A. 2000. Style machines. In Proceedings of the ACM SIGGRAPH International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’00). 183–192. 
    4. Catmull, E. and Rom, R. 1974. A class of local interpolating splines. In Computer Aided Geometric Design, Academic Press.
    5. Chai, J. and Hodgins, J 2005. Performance animation from low-dimensional control signals. ACM Trans. Graph. 24, 3, 686–696. 
    6. Chai, J. and Hodgins, J. 2007. Constraint-Based motion optimization using a statistical dynamic model. ACM Trans. Graph. 26, 3, Article no.8. 
    7. Grochow, K., Martin, S. L., Hertzmann, A., and Popović, Z. 2004. Style-Based inverse kinematics. ACM Trans. Graph. 23, 3, 522–531. 
    8. Heck, R., Kovar, L., and Gleicher, M 2007. Splicing upper-body actions with locomotion. Comput. Graph. Forum 25, 3, 459–466.
    9. Howe, N., Leventon, M., and Freeman, W 1999. Bayesian reconstruction of 3D human motion from single-camera video. Adv. Neural Inform. Process. Syst. 12, 820–826.
    10. Kovar, L. and Gleicher, M. 2003. Registration curves. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Symposium on Computer Animation. 214–224. 
    11. Kovar, L. and Gleicher, M. 2004. Automated extraction and parameterization of motions in large data sets. ACM Trans. Graph. 23, 3, 559–568. 
    12. Kovar, L., Gleicher, M., and Pighin, F. 2002. Motion graphs. ACM Trans. Graph. 21, 3, 473–482. 
    13. Kwon, T. and Shin, S. Y. 2005. Motion modeling for on-line locomotion synthesis. In Proceedings of the ACM SIGGRAPH Symposium on Computer Animation. 29–38. 
    14. Lee, J., Chai, J., Reitsma, P., Hodgins, J., and Pollard, N. 2002. Interactive control of avatars animated with human motion data. ACM Trans. Graph. 21, 3, 491–500. 
    15. Lee, K. H., Choi, M. G., and Lee, J 2006. Motion patches: Building blocks for virtual environments annotated with motion data. ACM Trans. Graph. 25, 3, 898–906. 
    16. Li, Y., Wang, T., and Shum, H.-Y. 2002. Motion texture: A two-level statistical model for character synthesis. ACM Trans. Graph. 21, 3, 465–472. 
    17. Lourakis, M. 2009. Levmar: Nonlinear least squares algorithms in C/C++. http://www.ics.forth.gr/lourakis/levmar/.
    18. Molina Tanco, L. and Hilton, A. 2000. Realistic synthesis of novel human movements from a database of motion capture examples. In Proceedings of the Workshop on Human Motion. 137–142. 
    19. Mukai, T. and Kuriyama, S. 2005. Geostatistical motion interpolation. ACM Trans. Graph. 24, 3, 1062–1070. 
    20. Myers, C. S. and Rabiner, L. R. 1981. A comparative study of several dynamic time-warping algorithms for connected word recognition. The Bell Syst.Tech. J. 60, 7, 1389–1409.
    21. Ormoneit, D., Sidenbladh, H., Black, M., and Hastie, T. 2001. Learning and tracking cyclic human motion. Adv. Neural Inform. Process. Syst. 13, 894–900.
    22. Pavlović, V., Rehg, J. M., and MacCormick, J. 2000. Learning switching linear models of human motion. Adv. Neural Inform. Process. Syst. 12, 981–987.
    23. Rose, C., Cohen, M. F., and Bodenheimer, B. 1998. Verbs and adverbs: Multidimensional motion interpolation. IEEE Comput. Graph. Appl. 18, 5, 32–40. 
    24. Safonova, A. and Hodgins, J. K. 2007. Construction and optimal search of interpolated motion graphs. ACM Trans. Graph. 26, 3, Article no. 106. 
    25. Shum, H. P. H., Komura, T., Shiraishi, M., and Yamazaki, S. 2008. Interaction patches for multi-character animation. ACM Trans. Graph. 27, 5, Article no. 114. 
    26. Sidenbladh, H., Black, M. J., and Sigal, L. 2002. Implicit probabilistic models of human motion for synthesis and tracking. In Proceedings of the European Conference on Computer Vision. 784–800. 
    27. Treuille, A., Lee, Y., and Popović, Z. 2007. Near-Optimal character animation with continuous control. ACM Trans. Graph. 26, 3, Article no. 7. 
    28. Witkin, A. and Kass, M. 1988. Spacetime constraints. In Proceedings of the ACM SIGGRAPH International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’88). 159–168. 
    29. Yin, K., Loken, K., and van de Panne, M. 2007. Simbicon: Simple biped locomotion control ACM Trans. Graph. 26, 3, Article no. 105. 

ACM Digital Library Publication:



Overview Page: