“Interactive generation of human animation with deformable motion models” by Min, Chen and Chai

  • ©Jianyuan Min, Yen-Lin Chen, and Jinxiang Chai

Conference:


Title:

    Interactive generation of human animation with deformable motion models

Presenter(s)/Author(s):



Abstract:


    This article presents a new motion model deformable motion models for human motion modeling and synthesis. Our key idea is to apply statistical analysis techniques to a set of precaptured human motion data and construct a low-dimensional deformable motion model of the form x = M(α, γ), where the deformable parameters α and γ control the motion’s geometric and timing variations, respectively. To generate a desired animation, we continuously adjust the deformable parameters’ values to match various forms of user-specified constraints. Mathematically, we formulate the constraint-based motion synthesis problem in a Maximum A Posteriori (MAP) framework by estimating the most likely deformable parameters from the user’s input. We demonstrate the power and flexibility of our approach by exploring two interactive and easy-to-use interfaces for human motion generation: direct manipulation interfaces and sketching interfaces.

References:


    1. Arikan, O. and Forsyth, D. A. 2002. Interactive motion generation from examples. ACM Trans. Graph. 21, 3, 483–490. Google ScholarDigital Library
    2. Bishop, C. 1996. Neural Network for Pattern Recognition. Cambridge University Press. Google ScholarDigital Library
    3. Brand, M. and Hertzmann, A. 2000. Style machines. In Proceedings of the ACM SIGGRAPH International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’00). 183–192. Google ScholarDigital Library
    4. Catmull, E. and Rom, R. 1974. A class of local interpolating splines. In Computer Aided Geometric Design, Academic Press.Google Scholar
    5. Chai, J. and Hodgins, J 2005. Performance animation from low-dimensional control signals. ACM Trans. Graph. 24, 3, 686–696. Google ScholarDigital Library
    6. Chai, J. and Hodgins, J. 2007. Constraint-Based motion optimization using a statistical dynamic model. ACM Trans. Graph. 26, 3, Article no.8. Google ScholarDigital Library
    7. Grochow, K., Martin, S. L., Hertzmann, A., and Popović, Z. 2004. Style-Based inverse kinematics. ACM Trans. Graph. 23, 3, 522–531. Google ScholarDigital Library
    8. Heck, R., Kovar, L., and Gleicher, M 2007. Splicing upper-body actions with locomotion. Comput. Graph. Forum 25, 3, 459–466.Google ScholarCross Ref
    9. Howe, N., Leventon, M., and Freeman, W 1999. Bayesian reconstruction of 3D human motion from single-camera video. Adv. Neural Inform. Process. Syst. 12, 820–826.Google Scholar
    10. Kovar, L. and Gleicher, M. 2003. Registration curves. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Symposium on Computer Animation. 214–224. Google ScholarDigital Library
    11. Kovar, L. and Gleicher, M. 2004. Automated extraction and parameterization of motions in large data sets. ACM Trans. Graph. 23, 3, 559–568. Google ScholarDigital Library
    12. Kovar, L., Gleicher, M., and Pighin, F. 2002. Motion graphs. ACM Trans. Graph. 21, 3, 473–482. Google ScholarDigital Library
    13. Kwon, T. and Shin, S. Y. 2005. Motion modeling for on-line locomotion synthesis. In Proceedings of the ACM SIGGRAPH Symposium on Computer Animation. 29–38. Google ScholarDigital Library
    14. Lee, J., Chai, J., Reitsma, P., Hodgins, J., and Pollard, N. 2002. Interactive control of avatars animated with human motion data. ACM Trans. Graph. 21, 3, 491–500. Google ScholarDigital Library
    15. Lee, K. H., Choi, M. G., and Lee, J 2006. Motion patches: Building blocks for virtual environments annotated with motion data. ACM Trans. Graph. 25, 3, 898–906. Google ScholarDigital Library
    16. Li, Y., Wang, T., and Shum, H.-Y. 2002. Motion texture: A two-level statistical model for character synthesis. ACM Trans. Graph. 21, 3, 465–472. Google ScholarDigital Library
    17. Lourakis, M. 2009. Levmar: Nonlinear least squares algorithms in C/C++. http://www.ics.forth.gr/lourakis/levmar/.Google Scholar
    18. Molina Tanco, L. and Hilton, A. 2000. Realistic synthesis of novel human movements from a database of motion capture examples. In Proceedings of the Workshop on Human Motion. 137–142. Google ScholarDigital Library
    19. Mukai, T. and Kuriyama, S. 2005. Geostatistical motion interpolation. ACM Trans. Graph. 24, 3, 1062–1070. Google ScholarDigital Library
    20. Myers, C. S. and Rabiner, L. R. 1981. A comparative study of several dynamic time-warping algorithms for connected word recognition. The Bell Syst.Tech. J. 60, 7, 1389–1409.Google ScholarCross Ref
    21. Ormoneit, D., Sidenbladh, H., Black, M., and Hastie, T. 2001. Learning and tracking cyclic human motion. Adv. Neural Inform. Process. Syst. 13, 894–900.Google Scholar
    22. Pavlović, V., Rehg, J. M., and MacCormick, J. 2000. Learning switching linear models of human motion. Adv. Neural Inform. Process. Syst. 12, 981–987.Google Scholar
    23. Rose, C., Cohen, M. F., and Bodenheimer, B. 1998. Verbs and adverbs: Multidimensional motion interpolation. IEEE Comput. Graph. Appl. 18, 5, 32–40. Google ScholarDigital Library
    24. Safonova, A. and Hodgins, J. K. 2007. Construction and optimal search of interpolated motion graphs. ACM Trans. Graph. 26, 3, Article no. 106. Google ScholarDigital Library
    25. Shum, H. P. H., Komura, T., Shiraishi, M., and Yamazaki, S. 2008. Interaction patches for multi-character animation. ACM Trans. Graph. 27, 5, Article no. 114. Google ScholarDigital Library
    26. Sidenbladh, H., Black, M. J., and Sigal, L. 2002. Implicit probabilistic models of human motion for synthesis and tracking. In Proceedings of the European Conference on Computer Vision. 784–800. Google ScholarDigital Library
    27. Treuille, A., Lee, Y., and Popović, Z. 2007. Near-Optimal character animation with continuous control. ACM Trans. Graph. 26, 3, Article no. 7. Google ScholarDigital Library
    28. Witkin, A. and Kass, M. 1988. Spacetime constraints. In Proceedings of the ACM SIGGRAPH International Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’88). 159–168. Google ScholarDigital Library
    29. Yin, K., Loken, K., and van de Panne, M. 2007. Simbicon: Simple biped locomotion control ACM Trans. Graph. 26, 3, Article no. 105. Google ScholarDigital Library