“Infinite continuous adaptivity for incompressible SPH”

  • ©Rene Winchenbach, Hendrik Hochstetter, and Andreas Kolb




    Infinite continuous adaptivity for incompressible SPH


Session Title: Fluids II



    In this paper we introduce a novel method to adaptive incompressible SPH simulations. Instead of using a scheme with a number of fixed particle sizes or levels, our approach allows continuous particle sizes. This enables us to define optimal particle masses with respect to, e.g., the distance to the fluid’s surface. A required change in mass due to the dynamics of the fluid is properly and stably handled by our scheme of mass redistribution. This includes temporally smooth changes in particle masses as well as sudden mass variations in regions of high flow dynamics. Our approach guarantees low spatial variations in particle size, which is a core property in order to achieve large adaptivity ratios for incompressible fluid simulations. Conceptually, our approach allows for infinite continuous adaptivity, practically we achieved adaptivity ratios up to 5 orders of magnitude, while still being mass preserving and numerically stable, yielding unprecedented vivid surface detail at comparably low computational cost and moderate particle counts.


    1. Bart Adams, Mark Pauly, Richard Keiser, and Leonidas J. Guibas. 2007. Adaptively sampled particle fluids. In ACM Trans. Graph. (Proc. ACM SIGGRAPH 2007), Vol. 26. ACM, 48:1–48:7. Google ScholarDigital Library
    2. Nadir Akinci, Gizem Akinci, and Matthias Teschner. 2013. Versatile Surface Tension and Adhesion for SPH Fluids. ACM Trans. Graph. 32, 6 (2013), 182:1–182:8. Google ScholarDigital Library
    3. Nadir Akinci, Markus Ihmsen, Gizem Akinci, Barbara Solenthaler, and Matthias Teschner. 2012. Versatile rigid-fluid coupling for incompressible SPH. ACM Trans. Graph. 31, 4 (2012), 1–8. Google ScholarDigital Library
    4. Ryoichi Ando, Nils Thürey, and Chris Wojtan. 2013. Highly Adaptive Liquid Simulations on Tetrahedral Meshes. ACM Trans. Graph. 32, 4, Article 103 (July 2013), 10 pages. Google ScholarDigital Library
    5. Markus Becker and Matthias Teschner. 2007. Weakly compressible SPH for free surface flows. Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symp. Comput. Animat. (2007), 209–217. http://portal.acm.org/citation.cfm?id=1272690.1272719$\delimiter”026E30F$nhttp://dl.acm.org/citation.cfm?id=1272719Google ScholarDigital Library
    6. Jan Bender and Dan Koschier. 2015. Divergence-Free Smoothed Particle Hydrodynamics. Proc. 2015 ACM SIGGRAPH/Eurographics Symp. Comput. Animat. 1 (2015). Google ScholarDigital Library
    7. Jens Cornelis, Markus Ihmsen, Andreas Peer, and Matthias Teschner. 2014. IISPH-FLIP for incompressible fluids. Comput. Graph. Forum 33, 2 (may 2014), 255–262. Google ScholarDigital Library
    8. Mathieu Desbrun and Marie-Paule Cani. 1999. Space-Time Adaptive Simulation of Highly Deformable Substances. Research Report RR-3829. INRIA. https://hal.inria.fr/inria-00072829Google Scholar
    9. R. A. Gingold and J. J. Monaghan. 1977. Smoothed particle hydrodynamics-theory and application to non-spherical stars. Monthly Notices of the Roy. Astronomical Soc. 181 (1977), 375–389.Google Scholar
    10. Takahiro Harada, Seiichi Koshizuka, and Yoichiro Kawaguchi. 2007. Smoothed Particle Hydrodynamics on GPUs. Computer Graphics International (2007), 63–70.Google Scholar
    11. Lars Hernquist and Neal Katz. 1989. TREESPH – A unification of SPH with the hierarchical tree method. Astrophys. J. Suppl. Ser. 70 (1989), 419. Google ScholarCross Ref
    12. Christopher Jon Horvath and Barbara Solenthaler. 2013. Mass Preserving Multi-Scale SPH. Technical Report. Emeryville, CA.Google Scholar
    13. Markus Ihmsen, Jens Cornelis, Barbara Solenthaler, Christopher Horvath, and Matthias Teschner. 2014. Implicit incompressible SPH. IEEE Trans. Vis. Comput. Graph. 20, 3 (2014), 426–435. Google ScholarDigital Library
    14. Richard Keiser, Bart Adams, Philip Dutré, Leonidas Guibas, and Mark Pauly. 2006. Multiresolution particle-based fluids. Technical Report 520. Department of Computer Science, ETH Zurich. 10 pages.Google Scholar
    15. Bryan M. Klingner, Bryan E. Fieldman, Nuttapong Chentanez, and James F. O’Brien. 2006. Fluid Animation with Dynamic Meshes. In Proceedings of ACM SIGGRAPH 2006. 820–825. http://graphics.cs.berkeley.edu/papers/Klingner-FAD-2006-08/Google Scholar
    16. Frank Losasso, Frédéric Gibou, and Ron Fedkiw. 2004. Simulating Water and Smoke with an Octree Data Structure. ACM Trans. Graph. 23, 3 (Aug. 2004), 457–462. Google ScholarDigital Library
    17. Miles Macklin and Matthias Müller. 2013. Position based fluids. ACM Trans. Graph. 32, 4 (2013), 1. Google ScholarDigital Library
    18. J. J. Monaghan. 1992. Smoothed particle hydrodynamics. Annual review of astronomy and astrophysics 30, 1 (1992), 543–574. arXiv:arXiv:1007.1245v2 Google ScholarCross Ref
    19. J J Monaghan. 2005. Smoothed particle hydrodynamics. Reports Prog. Phys. 68, 8 (2005), 1–34. arXiv:astro-ph/0507472v1 Google ScholarCross Ref
    20. Matthias Müller, David Charypar, and Markus Gross. 2003. Particle-Based Fluid Simulation for Interactive Applications. Proc. ACM SIGGRAPH/Eurographics Symp. Comput. Animat. 5 (2003), 154–159.Google Scholar
    21. Jens Orthmann and Andreas Kolb. 2012. Temporal blending for adaptive SPH. Computer Graphics Forum 31, 8 (2012), 2436–2449. Google ScholarDigital Library
    22. Andreas Peer, Markus Ihmsen, Jens Cornelis, and Matthias Teschner. 2015. An implicit viscosity formulation for SPH fluids. ACM Trans. Graph. 34, 4 (jul 2015), 114:1–114:10. Google ScholarDigital Library
    23. Barbara Solenthaler and Markus Gross. 2011. Two-scale particle simulation. ACM Trans. Graph. 30, 4 (2011), 1. Google ScholarDigital Library
    24. B. Solenthaler and R. Pajarola. 2009. Predictive-corrective incompressible SPH. ACM Trans. Graph. 28, 3 (2009), 1. Google ScholarDigital Library
    25. R. Vacondio, B.D. Rogers, P.K. Stansby, and P. Mignosa. 2016. Variable resolution for SPH in three dimensions: Towards optimal splitting and coalescing for dynamic adaptivity. Comput. Meth. Appl. Mechanics and Eng. 300 (2016), 442 — 460. Google ScholarCross Ref
    26. R. Vacondio, B.D. Rogers, P.K. Stansby, P. Mignosa, and J. Feldman. 2013. Variable resolution for SPH: A dynamic particle coalescing and splitting scheme. Comput. Meth. Appl. Mechanics and Eng. 256 (2013), 132 — 148. Google ScholarCross Ref
    27. Rene Winchenbach, Hendrik Hochstetter, and Andreas Kolb. 2016. Constrained Neighbor Lists for SPH-based Fluid Simulations. In Proc. Eurographics/ACM SIGGRAPH Symp. Comput. Animat. Eurographics Association.Google Scholar
    28. Yongning Zhu and Robert Bridson. 2005. Animating sand as a fluid. ACM Transactions on Graphics 24, 3 (2005), 965. Google ScholarDigital Library

ACM Digital Library Publication: