“Implicit visibility and antiradiance for interactive global illumination” by Dachsbacher, Stamminger, Drettakis and Durand

  • ©Carsten Dachsbacher, Marc Stamminger, George Drettakis, and Frédo Durand

Conference:


Type:


Title:

    Implicit visibility and antiradiance for interactive global illumination

Presenter(s)/Author(s):



Abstract:


    We reformulate the rendering equation to alleviate the need for explicit visibility computation, thus enabling interactive global illumination on graphics hardware. This is achieved by treating visibility implicitly and propagating an additional quantity, called antiradiance, to compensate for light transmitted extraneously. Our new algorithm shifts visibility computation to simple local iterations by maintaining additional directional antiradiance information with samples in the scene. It is easy to parallelize on a GPU. By correctly treating discretization and filtering, we can compute indirect illumination in scenes with dynamic objects much faster than traditional methods. Our results show interactive update of indirect illumination with moving characters and lights.

References:


    1. Arvo, J., Torrance, K., and Smits, B. 1994. A framework for the analysis of error in global illumination algorithms. In SIGGRAPH ’94, 75–84. Google ScholarDigital Library
    2. Buckalew, C., and Fussell, D. 1989. Illumination networks: Fast realistic rendering with general reflectance functions. In SIGGRAPH ’89, 89–98. Google ScholarDigital Library
    3. Bunnell, M. 2005. Dynamic ambient occlusion and indirect lighting. GPU Gems 2: Programming Techniques for High Performance Graphics and General-Purpose Computation, 223–233.Google Scholar
    4. Chen, S. E. 1990. Incremental radiosity: An extension of progressive radiosity to an interactive image synthesis systems. In SIGGRAPH ’90, 135–144. Google ScholarDigital Library
    5. Coombe, G., Harris, M. J., and Lastra, A. 2004. Radiosity on graphics hardware. In Proc. Graphics Interface ’04, 161–168. Google ScholarDigital Library
    6. Drettakis, G., and Sillion, F. 1997. Interactive update of global illumination using a line-space hierarchy. In SIGGRAPH ’97, 57–64. Google ScholarDigital Library
    7. Dutré, P., Bekaert, P., and Bala, K. 2006. Advanced Global Illumination. A K Peters, Natick, USA. Google ScholarDigital Library
    8. Guennebaud, G., Barthe, L., and Paulin, M. 2006. Real-time soft shadow mapping by backprojection. In Proc. EG Symposium on Rendering 2006, 227–234. Google ScholarCross Ref
    9. Hašan, M., Pellacini, F., and Bala, K. 2006. Direct-to-indirect transfer for cinematic relighting. ACM Trans. on Graphics (SIGGRAPH ’06) 25, 3 (July), 1089–1097. Google ScholarDigital Library
    10. Jensen, H. W., and Christensen, N. J. 1995. Efficiently Rendering Shadows Using the Photon Map. In Compugraphics ’95, 285–291.Google Scholar
    11. Kajiya, J. T. 1986. The rendering equation. SIGGRAPH ’86 20, 3, 143–150. Google ScholarDigital Library
    12. Kautz, J., Sloan, P.-P., and Snyder, J. 2002. Fast, arbitrary BRDF shading for low-frequency lighting using Spherical Harmonics. In Proc. EG Workshop on Rendering, 291–296. Google ScholarDigital Library
    13. Keller, A. 1997. Instant radiosity. In SIGGRAPH ’97, 49–56. Google ScholarDigital Library
    14. Kontkanen, J., Turquin, E., Holzschuch, N., and Sillion, F. 2006. Wavelet radiance transport for interactive indirect lighting. In Proc. EG Symposium on Rendering 2006. Google ScholarCross Ref
    15. Kristensen, A. W., Akenine-Möller, T., and Jensen, H. W. 2005. Precomputed local radiance transfer for real-time lighting design. ACM Trans. on Graphics (SIGGRAPH ’05) 24, 3, 1208. Google ScholarDigital Library
    16. Lavignotte, F., and Paulin, M. 2003. Scalable photon splatting for global illumination. In GRAPHITE ’03. Google ScholarDigital Library
    17. Pellegrini, M. 1999. Rendering equation revisited: How to avoid explicit visibility computations. In SODA, 725–733. Google ScholarDigital Library
    18. Pharr, M., and Humphreys, G. 2004. Physically Based Rendering from Theory to Implementation. Morgan Kaufmann. Google ScholarDigital Library
    19. Puech, C., Sillion, F., and Vedel, C. 1990. Improving interaction with radiosity-based lighting simulation programs. 51–57. Proc. SIGGRAPH Symposium on Interactive 3D Graphics’90. Google ScholarDigital Library
    20. Purcell, T. J., Donner, C., Cammarano, M., Jensen, H. W., and Hanrahan, P. 2003. Photon mapping on programmable graphics hardware. In Proc. of the SIGGRAPH/EG Conf. on Graphics Hardware, 41–50. Google ScholarDigital Library
    21. Ren, L., Pfister, H., and Zwicker, M. 2002. Object space EWA surface splatting: A hardware accelerated approach to high quality point rendering. Comp. Graphics Forum (Proc. Eurographics ’02) 21, 3.Google Scholar
    22. Ren, Z., Wang, R., Snyder, J., Zhou, K., Liu, X., Sun, B., Sloan, P.-P., Bao, H., Peng, Q., and Guo, B. 2006. Real-time soft shadows in dynamic scenes using spherical harmonic exponentiation. ACM Trans. on Graphics (SIGGRAPH ’06) 25, 3 (July), 977–986. Google ScholarDigital Library
    23. Shaw, E. 1997. Hierarchical radiosity for dynamic environments. Computer Graphics Forum 16, 2, 107–118.Google ScholarCross Ref
    24. Sillion, F. X., and Puech, C. 1994. Radiosity and Global Illumination. Morgan Kaufmann, San Francisco, CA, USA. Google ScholarDigital Library
    25. Sillion, F. X., Drettakis, G., and Soler, C. 1995. A clustering algorithm for radiance calculation in general environments. In Proc. EG Workshop on Rendering, 196–205.Google Scholar
    26. Sillion, F. X. 1995. A unified hierarchical algorithm for global illumination with scattering volumes and object clusters. IEEE Trans. on Visualization and Computer Graphics 1, 3, 240–254. Google ScholarDigital Library
    27. Sloan, P.-P., Kautz, J., and Snyder, J. 2002. Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. ACM Trans. on Graphics (SIGGRAPH ’02) 21, 3, 527–536. Google ScholarDigital Library
    28. Sloan, P.-P., Luna, B., and Snyder, J. 2005. Local, deformable precomputed radiance transfer. ACM Trans. on Graphics (SIGGRAPH ’05) 24, 3, 1216–1224. Google ScholarDigital Library
    29. Smits, B. E., Arvo, J., and Greenberg, D. P. 1994. A clustering algorithm for radiosity in complex environments. In SIGGRAPH’94, 435–442. Google ScholarDigital Library
    30. Stamminger, M., Scheel, A., Granier, X., Perez-Cazorla, F., Drettakis, G., and Sillion, F. X. 2000. Efficient glossy global illumination with interactive viewing. Computer Graphics Forum 19, 1, 13–25.Google ScholarCross Ref
    31. Tole, P., Pellacini, F., Walter, B., and Greenberg, D. P. 2002. Interactive global illumination in dynamic scenes. ACM Trans. on Graphics (SIGGRAPH ’02) 21, 3, 537–546. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: