“Implicit neural representation for physics-driven actuated soft bodies” by Yang, Kim, Zoss, Gözcü, Gross, et al. …

  • ©Lingchen Yang, Byungsoo Kim, Gaspard Zoss, Baran Gözcü, Markus Gross, and Barbara Solenthaler

Conference:


Type(s):


Title:

    Implicit neural representation for physics-driven actuated soft bodies

Presenter(s)/Author(s):



Abstract:


    Active soft bodies can affect their shape through an internal actuation mechanism that induces a deformation. Similar to recent work, this paper utilizes a differentiable, quasi-static, and physics-based simulation layer to optimize for actuation signals parameterized by neural networks. Our key contribution is a general and implicit formulation to control active soft bodies by defining a function that enables a continuous mapping from a spatial point in the material space to the actuation value. This property allows us to capture the signal’s dominant frequencies, making the method discretization agnostic and widely applicable. We extend our implicit model to mandible kinematics for the particular case of facial animation and show that we can reliably reproduce facial expressions captured with high-quality capture systems. We apply the method to volumetric soft bodies, human poses, and facial expressions, demonstrating artist-friendly properties, such as simple control over the latent space and resolution invariance at test time.

References:


    1. Moritz Bächer, Espen Knoop, and Christian Schumacher. 2021. Design and Control of Soft Robots Using Differentiable Simulation. Current Robotics Reports 2, 2 (6 2021), 211–221. Google ScholarCross Ref
    2. Michael Bao, Matthew Cong, Stéphane Grabli, and Ronald Fedkiw. 2018. High-Quality Face Capture Using Anatomical Muscles. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (12 2018). http://arxiv.org/abs/1812.02836Google Scholar
    3. Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014. Projective dynamics: fusing constraint projections for fast simulation. ACM Transactions on Graphics 33, 4 (7 2014), 1–11. Google ScholarDigital Library
    4. Dan Casas and Miguel A. Otaduy. 2018. Learning Nonlinear Soft-Tissue Dynamics for Interactive Avatars. Proceedings of the ACM on Computer Graphics and Interactive Techniques 1, 1 (7 2018), 1–15. Google ScholarDigital Library
    5. Eric R. Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein. 2020. pi-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis. CVPR 2021 (Oral) (12 2020). http://arxiv.org/abs/2012.00926Google Scholar
    6. Prashanth Chandran, Derek Bradley, Markus Gross, and Thabo Beeler. 2020. Semantic Deep Face Models. In 2020 International Conference on 3D Vision (3DV). IEEE, 345–354. Google ScholarCross Ref
    7. Jonas Degrave, Michiel Hermans, Joni Dambre, and Francis wyffels. 2019. A Differentiable Physics Engine for Deep Learning in Robotics. Frontiers in Neurorobotics 13 (3 2019). Google ScholarCross Ref
    8. Tao Du, Kui Wu, Pingchuan Ma, Sebastien Wah, Andrew Spielberg, Daniela Rus, and Wojciech Matusik. 2022. DiffPD: Differentiable Projective Dynamics. ACM Transactions on Graphics 41, 2 (4 2022), 1–21. Google ScholarDigital Library
    9. Bernhard Egger, William A. P. Smith, Ayush Tewari, Stefanie Wuhrer, Michael Zollhoefer, Thabo Beeler, Florian Bernard, Timo Bolkart, Adam Kortylewski, Sami Romdhani, Christian Theobalt, Volker Blanz, and Thomas Vetter. 2020. 3D Morphable Face Models—Past, Present, and Future. ACM Transactions on Graphics 39, 5 (10 2020), 1–38. Google ScholarDigital Library
    10. Lawson Fulton, Vismay Modi, David Duvenaud, David I. W. Levin, and Alec Jacobson. 2019. Latent-space Dynamics for Reduced Deformable Simulation. Computer Graphics Forum 38, 2 (5 2019), 379–391. Google ScholarCross Ref
    11. Moritz Geilinger, David Hahn, Jonas Zehnder, Moritz Bächer, Bernhard Thomaszewski, and Stelian Coros. 2020. ADD: analytically differentiable dynamics for multi-body systems with frictional contact. ACM Transactions on Graphics 39, 6 (11 2020), 1–15. Google ScholarDigital Library
    12. David Hahn, Pol Banzet, James M. Bern, and Stelian Coros. 2019. Real2Sim: visco-elastic parameter estimation from dynamic motion. ACM Transactions on Graphics 38, 6 (11 2019), 1–13. Google ScholarDigital Library
    13. Philipp Holl, Vladlen Koltun, and Nils Thuerey. 2020. Learning to Control PDEs with Differentiable Physics. International Conference on Learning Representations (1 2020). http://arxiv.org/abs/2001.07457Google Scholar
    14. Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, and Frédo Durand. 2019a. DiffTaichi: Differentiable Programming for Physical Simulation. International Conference on Learning Representations (10 2019). http://arxiv.org/abs/1910.00935Google Scholar
    15. Yuanming Hu, Jiancheng Liu, Andrew Spielberg, Joshua B. Tenenbaum, William T. Freeman, Jiajun Wu, Daniela Rus, and Wojciech Matusik. 2019b. ChainQueen: A Real-Time Differentiable Physical Simulator for Soft Robotics. In 2019 International Conference on Robotics and Automation (ICRA). IEEE, 6265–6271. Google ScholarDigital Library
    16. Xun Huang and Serge Belongie. 2017. Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization. ICCV 2017 (Oral) (3 2017). http://arxiv.org/abs/1703.06868Google Scholar
    17. Alexandru-Eugen Ichim, Petr Kadleček, Ladislav Kavan, and Mark Pauly. 2017. Phace: Physics-based Face Modeling and Animation. ACM Transactions on Graphics 36, 4 (7 2017), 1–14. Google ScholarDigital Library
    18. Petr Kadleček and Ladislav Kavan. 2019. Building Accurate Physics-based Face Models from Data. Proceedings of the ACM on Computer Graphics and Interactive Techniques 2, 2 (7 2019), 1–16. Google ScholarDigital Library
    19. Theodore Kim and David Eberle. 2020. Dynamic deformables: implementation and production practicalities. In ACM SIGGRAPH 2020 Courses. ACM, New York, NY, USA, 1–182. Google ScholarDigital Library
    20. Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference Track Proceedings (12 2015). http://arxiv.org/abs/1412.6980Google Scholar
    21. Gergely Klár, Andrew Moffat, Ken Museth, and Eftychios Sifakis. 2020. Shape Targeting: A Versatile Active Elasticity Constitutive Model. In Special Interest Group on Computer Graphics and Interactive Techniques Conference Talks. ACM, New York, NY, USA, 1–2. Google ScholarDigital Library
    22. Oliver Klehm, Fabrice Rousselle, Marios Papas, Derek Bradley, Christophe Hery, Bernd Bickel, Wojciech Jarosz, and Thabo Beeler. 2015. Recent Advances in Facial Appearance Capture. Computer Graphics Forum 34, 2 (5 2015), 709–733. Google ScholarDigital Library
    23. J P Lewis, Ken Anjyo, Taehyun Rhee, Mengjie Zhang, Fred Pighin, and Zhigang Deng. 2014. Practice and Theory of Blendshape Facial Models. In Eurographics 2014 – State of the Art Reports, Sylvain Lefebvre and Michela Spagnuolo (Eds.). The Eurographics Association. Google ScholarCross Ref
    24. Ruilong Li, Karl Bladin, Yajie Zhao, Chinmay Chinara, Owen Ingraham, Pengda Xiang, Xinglei Ren, Pratusha Prasad, Bipin Kishore, Jun Xing, and Hao Li. 2020. Learning Formation of Physically-Based Face Attributes. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 3407–3416. Google ScholarCross Ref
    25. Junbang Liang, Ming C. Lin, and Vladlen Koltun. 2019. Differentiable Cloth Simulation for Inverse Problems. In Advances in Neural Information Processing Systems. Google ScholarDigital Library
    26. Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black. 2015. SMPL: a skinned multi-person linear model. ACM Transactions on Graphics 34, 6 (11 2015), 1–16. Google ScholarDigital Library
    27. M. Macklin, K. Erleben, M. Müller, N. Chentanez, S. Jeschke, and T.Y. Kim. 2020. Primal/Dual Descent Methods for Dynamics. Computer Graphics Forum 39, 8 (12 2020), 89–100. Google ScholarDigital Library
    28. Naureen Mahmood, Nima Ghorbani, Nikolaus F. Troje, Gerard Pons-Moll, and Michael J. Black. 2019. AMASS: Archive of Motion Capture as Surface Shapes. ICCV (4 2019). http://arxiv.org/abs/1904.03278Google Scholar
    29. Aleka McAdams, Andrew Selle, Rasmus Tamstorf, Joseph Teran, and Eftychios Sifakis. 2011. Computing the singular value decomposition of 3×3 matrices with minimal branching and elementary floating point operations. Technical Report. University of Wisconsin-Madison Department of Computer Sciences.Google Scholar
    30. Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. 2019. Occupancy Networks: Learning 3D Reconstruction in Function Space. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (12 2019). http://arxiv.org/abs/1812.03828Google ScholarCross Ref
    31. Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. In ECCV. 405–421. Google ScholarCross Ref
    32. Nathan Mitchell, Court Cutting, and Eftychios Sifakis. 2015. GRIDiron: An interactive authoring and cognitive training foundation for reconstructive plastic surgery procedures. ACM Transactions on Graphics 34, 4 (7 2015), 1–12. Google ScholarDigital Library
    33. Roy Or-El, Xuan Luo, Mengyi Shan, Eli Shechtman, Jeong Joon Park, and Ira Kemelmacher-Shlizerman. 2021. StyleSDF: High-Resolution 3D-Consistent Image and Geometry Generation. (12 2021). http://arxiv.org/abs/2112.11427Google Scholar
    34. Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove. 2019. DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (1 2019). http://arxiv.org/abs/1901.05103Google ScholarCross Ref
    35. Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems 32. 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdfGoogle Scholar
    36. Gerard Pons-Moll, Javier Romero, Naureen Mahmood, and Michael J. Black. 2015. Dyna: a model of dynamic human shape in motion. ACM Transactions on Graphics 34, 4 (7 2015), 1–14. Google ScholarDigital Library
    37. Yiling Qiao, Junbang Liang, Vladlen Koltun, and Ming Lin. 2021. Differentiable Simulation of Soft Multi-body Systems. Advances in Neural Information Processing Systems 34 (2021).Google Scholar
    38. Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, and Ming C. Lin. 2020. Scalable Differentiable Physics for Learning and Control. International Conference on Machine Learning (7 2020). http://arxiv.org/abs/2007.02168Google Scholar
    39. Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter W. Battaglia. 2020. Learning to Simulate Complex Physics with Graph Networks. International Conference on Machine Learning (2 2020). http://arxiv.org/abs/2002.09405Google Scholar
    40. Igor Santesteban, Elena Garces, Miguel A. Otaduy, and Dan Casas. 2020. SoftSMPL: Data-driven Modeling of Nonlinear Soft-tissue Dynamics for Parametric Humans. Computer Graphics Forum 39, 2 (5 2020), 65–75. Google ScholarCross Ref
    41. Eftychios Sifakis, Igor Neverov, and Ronald Fedkiw. 2005. Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Transactions on Graphics 24, 3 (7 2005), 417–425. Google ScholarDigital Library
    42. Vincent Sitzmann, Julien N P Martel, Alexander W Bergman, David B Lindell, and Gordon Wetzstein. 2020. Implicit Neural Representations with Periodic Activation Functions. In NeurIPS 2020, Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (Eds.). https://proceedings.neurips.cc/paper/2020/hash/53c04118df112c13a8c34b38343b9c10-Abstract.htmlGoogle Scholar
    43. Sangeetha Grama Srinivasan, Qisi Wang, Junior Rojas, Gergely Klár, Ladislav Kavan, and Eftychios Sifakis. 2021. Learning active quasistatic physics-based models from data. ACM Transactions on Graphics 40, 4 (8 2021), 1–14. Google ScholarDigital Library
    44. Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. 2020. Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains. NeurIPS 2020 (Spotlight) (6 2020). http://arxiv.org/abs/2006.10739Google Scholar
    45. Jingwei Tang, Vinicius C. Azevedo, Guillaume Cordonnier, and Barbara Solenthaler. 2021. Honey, I Shrunk the Domain: Frequency-aware Force Field Reduction for Efficient Fluids Optimization. Computer Graphics Forum 40, 2 (5 2021), 339–353. Google ScholarCross Ref
    46. Peng Zhou, Lingxi Xie, Bingbing Ni, and Qi Tian. 2021. CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis. (10 2021). http://arxiv.org/abs/2110.09788Google Scholar
    47. Gaspard Zoss, Thabo Beeler, Markus Gross, and Derek Bradley. 2019. Accurate markerless jaw tracking for facial performance capture. ACM Transactions on Graphics 38, 4 (7 2019), 1–8. Google ScholarDigital Library
    48. Gaspard Zoss, Derek Bradley, Pascal Bérard, and Thabo Beeler. 2018. An empirical rig for jaw animation. ACM Transactions on Graphics 37, 4 (8 2018), 1–12. Google ScholarDigital Library
    49. Gaspard Zoss, Eftychios Sifakis, Markus Gross, Thabo Beeler, and Derek Bradley. 2020. Data-driven extraction and composition of secondary dynamics in facial performance capture. ACM Transactions on Graphics 39, 4 (7 2020). Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: