“HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions” by Mantiuk, Kim, Rempel and Heidrich

  • ©Rafal K. Mantiuk, Kil Joong Kim, Allan Rempel, and Wolfgang Heidrich




    HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions



    Visual metrics can play an important role in the evaluation of novel lighting, rendering, and imaging algorithms. Unfortunately, current metrics only work well for narrow intensity ranges, and do not correlate well with experimental data outside these ranges. To address these issues, we propose a visual metric for predicting visibility (discrimination) and quality (mean-opinion-score). The metric is based on a new visual model for all luminance conditions, which has been derived from new contrast sensitivity measurements. The model is calibrated and validated against several contrast discrimination data sets, and image quality databases (LIVE and TID2008). The visibility metric is shown to provide much improved predictions as compared to the original HDR-VDP and VDP metrics, especially for low luminance conditions. The image quality predictions are comparable to or better than for the MS-SSIM, which is considered one of the most successful quality metrics. The code of the proposed metric is available on-line.


    1. Artal, P., and Navarro, R. 1994. Monochromatic modulation transfer function of the human eye for different pupil diameters: an analytical expression. J. Opt. Soc. Am. A 11, 1, 246–249.Google ScholarCross Ref
    2. Aydin, T. O., Mantiuk, R., Myszkowski, K., and Seidel, H.-P. 2008. Dynamic range independent image quality assessment. ACM Trans. on Graphics (SIGGRAPH’08) 27, 3, 69. Google ScholarDigital Library
    3. Aydin, T. O., Čadík, M., Myszkowski, K., and Seidel, H.-P. 2010. Video quality assessment for computer graphics applications. ACM Trans. Graph. 29, 161:1–161:12. Google ScholarDigital Library
    4. Barten, P. G. J. 1999. Contrast sensitivity of the human eye and its effects on image quality. SPIE Press.Google Scholar
    5. Blackwell, H. 1946. Contrast thresholds of the human eye. Journal of the Optical Society of America 36, 11, 624–632.Google ScholarCross Ref
    6. CIE. 1951. In CIE Proceedings, vol. 1, 37.Google Scholar
    7. Daly, S., Co, E., and Rochester, N. 1994. A visual model for optimizing the design of image processingalgorithms. In Proc. of IEEE ICIP, vol. 2, 16–20.Google Scholar
    8. Daly, S. 1990. Application of a noise-adaptive contrast sensitivity function to image data compression. Optical Engineering 29, 08, 977–987.Google ScholarCross Ref
    9. Daly, S. 1993. Digital Images and Human Vision. MIT Press, ch. The Visible Differences Predictor: An Algorithm for the Assessment of Image Fidelity, 179–206. Google ScholarDigital Library
    10. De Valois, R., Albrecht, D., and Thorell, L. 1982. Spatial frequency selectivity of cells in macaque visual cortex. Vision Research 22, 5, 545–559.Google ScholarCross Ref
    11. Ferwerda, J., Pattanaik, S., Shirley, P., and Greenberg, D. 1996. A model of visual adaptation for realistic image synthesis. In Proc. of SIGGRAPH 96, 249–258. Google ScholarDigital Library
    12. Foley, J. 1994. Human luminance pattern-vision mechanisms: masking experiments require a new model. Journal of the Optical Society of America A 11, 6, 1710–1719.Google ScholarCross Ref
    13. Georgeson, M., and Georgeson, J. 1987. Facilitation and masking of briefly presented gratings: time-course and contrast dependence. Vision Research 27, 3, 369–379.Google ScholarCross Ref
    14. Georgeson, M. A., and Sullivan, G. D. 1975. Contrast constancy: deblurring in human vision by spatial frequency channels. J. Physiol. 252, 3 (Nov.), 627–656.Google ScholarCross Ref
    15. He, S., and MacLeod, D. 1998. Contrast-modulation flicker: Dynamics and spatial resolution of the light adaptation process. Vision Res 38, 7, 985–1000.Google ScholarCross Ref
    16. Hess, R., Sharpe, L., and Nordby, K. 1990. Night Vision: Basic, Clinical and Applied Aspects. Cambridge University Press.Google Scholar
    17. Ijspeert, J., van den Berg, T., and Spekreijse, H. 1993. An improved mathematical description of the foveal visual point spread function with parameters for age, pupil size and pigmentation. Vision research 33, 1, 15–20.Google Scholar
    18. ITU-R-BT.500-11, 2002. Methodology for the subjective assessment of the quality of television pictures.Google Scholar
    19. Lee, B., Dacey, D., Smith, V., and Pokorny, J. 1999. Horizontal cells reveal cone type-specific adaptation in primate retina. Proceedings of the National Academy of Sciences of the United States of America 96, 25, 14611.Google Scholar
    20. Lovell, P., Párraga, C., Troscianko, T., Ripamonti, C., and Tolhurst, D. 2006. Evaluation of a multiscale color model for visual difference prediction. ACM Transactions on Applied Perception (TAP) 3, 3, 155–178. Google ScholarDigital Library
    21. Lubin, J. 1995. A visual discrimination model for imaging system design and evaluation. World Scientific Publishing Company, 245.Google Scholar
    22. Lukin, A. 2009. Improved Visible Differences Predictor Using a Complex Cortex Transform. International Conference on Computer Graphics and Vision (GraphiCon).Google Scholar
    23. MacLeod, D., Williams, D., and Makous, W. 1992. A visual nonlinearity fed by single cones. Vision Res 32, 2, 347–63.Google ScholarCross Ref
    24. Mantiuk, R., Daly, S., Myszkowski, K., and Seidel, H. 2005. Predicting visible differences in high dynamic range images: model and its calibration. In Proc. SPIE, vol. 5666, 204–214.Google Scholar
    25. Mantiuk, R., Daly, S., and Kerofsky, L. 2008. Display adaptive tone mapping. ACM Transactions on Graphics (Proc. of SIGGRAPH) 27, 3, 68. Google ScholarDigital Library
    26. Mantiuk, R., Rempel, A. G., and Heidrich, W. 2009. Display considerations for night and low-illumination viewing. In Proc. of APGV ’09, 53–58. Google ScholarDigital Library
    27. Marimont, D., and Wandell, B. 1994. Matching color images: The effects of axial chromatic aberration. Journal of the Optical Society of America A 11, 12, 3113–3122.Google ScholarCross Ref
    28. Meese, T., and Summers, R. 2007. Area summation in human vision at and above detection threshold. Proceedings of the Royal Society B: Biological Sciences 274, 2891–2900.Google ScholarCross Ref
    29. Myszkowski, K., Rokita, P., and Tawara, T. 1999. Perceptually-informed accelerated rendering of high quality walkthrough sequences. Rendering Techniques 99, 5–18. Google ScholarDigital Library
    30. Pattanaik, S. N., Ferwerda, J. A., Fairchild, M. D., and Greenberg, D. P. 1998. A multiscale model of adaptation and spatial vision for realistic image display. In Proc. of SIGGRAPH’98, 287–298. Google ScholarDigital Library
    31. Pattanaik, S., Tumblin, J., Yee, H., and Greenberg, D. 2000. Time-dependent visual adaptation for realistic image display. In Proc. of SIGGRAPH’00, 47–54. Google ScholarDigital Library
    32. Ponomarenko, N., Battisti, F., Egiazarian, K., Astola, J., and Lukin, V. 2009. Metrics performance comparison for color image database. In 4th int. workshop on video processing and quality metrics for consumer electronics (QoMEX).Google Scholar
    33. Ramanarayanan, G., Ferwerda, J., Walter, B., and Bala, K. 2007. Visual equivalence: towards a new standard for image fidelity. ACM Trans. on Graphics (SIGGRAPH’07), 76. Google ScholarDigital Library
    34. Ramasubramanian, M., Pattanaik, S. N., and Greenberg, D. P. 1999. A perceptually based physical error metric for realistic image synthesis. In Proc. of SIGGRAPH ’99, 73–82. Google ScholarDigital Library
    35. Richter, T. 2009. On the mDCT-PSNR image quality index. In Quality of Multimedia Experience, 2009. QoMEx, 53–58.Google ScholarCross Ref
    36. Ritschel, T., Ihrke, M., Frisvad, J. R., Coppens, J., Myszkowski, K., and Seidel, H.-P. 2009. Temporal Glare: Real-Time Dynamic Simulation of the Scattering in the Human Eye. Computer Graphics Forum 28, 2, 183–192.Google ScholarCross Ref
    37. Rohaly, A., Ahumada Jr, A., and Watson, A. 1997. Object detection in natural backgrounds predicted by discrimination performance and models. Vision Research 37, 23, 3225–3235.Google ScholarCross Ref
    38. Rovamo, J., Kukkonen, H., and Mustonen, J. 1998. Foveal optical modulation transfer function of the human eye at various pupil sizes. Journal of the Optical Society of America A 15, 9, 2504–2513.Google ScholarCross Ref
    39. Sheikh, H., Sabir, M., and Bovik, A. 2006. A Statistical Evaluation of Recent Full Reference Image Quality Assessment Algorithms. IEEE Transactions on Image Processing 15, 11, 3440–3451. Google ScholarDigital Library
    40. Simoncelli, E., and Freeman, W. 2002. The steerable pyramid: a flexible architecture for multi-scale derivative computation. In Proceedings., International Conference on Image Processing, IEEE Comput. Soc. Press, vol. 3, 444–447. Google ScholarDigital Library
    41. Smith Jr, R., and Swift, D. 1985. Spatial-frequency masking and Birdsalls theorem. Journal of the Optical Society of America A 2, 9, 1593–1599.Google ScholarCross Ref
    42. Stockman, A., and Sharpe, L. 2000. The spectral sensitivities of the middle-and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vision Res 40, 13, 1711–1737.Google ScholarCross Ref
    43. Stromeyer, C. F., and Julesz, B. 1972. Spatial-Frequency Masking in Vision: Critical Bands and Spread of Masking. Journal of the Optical Society of America 62, 10 (Oct.), 1221.Google ScholarCross Ref
    44. van den Berg, T., IJspeert, J., and de Waard, P. 1991. Dependence of intraocular straylight on pigmentation and light transmission through the ocular wall. Vision Res 31, 7-8, 1361–7.Google ScholarCross Ref
    45. Vos, J., and van den Berg, T. 1999. Report on disability glare. CIE Research Note 135, 1.Google Scholar
    46. Wang, Z., and Bovik, A. C. 2006. Modern Image Quality Assessment. Morgan & Claypool.Google Scholar
    47. Wang, Z., Simoncelli, E., and Bovik, A. 2003. Multi-scale structural similarity for image quality assessment. In Asilomar Conference on Signals, Systems & Computers, 2003, 1398–1402.Google Scholar
    48. Wang, Z., Bovik, A., Sheikh, H., and Simoncelli, E. 2004. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing 13, 4, 600–612. Google ScholarDigital Library
    49. Watson, A., and Ahumada Jr, A. 2005. A standard model for foveal detection of spatial contrast. Journal of Vision 5, 9, 717–740.Google ScholarCross Ref
    50. Watson, A., and Pelli, D. 1983. QUEST: A Bayesian adaptive psychometric method. Perception & Psychophysics 33, 2, 113–120.Google ScholarCross Ref
    51. Watson, A., and Solomon, J. 1997. Model of visual contrast gain control and pattern masking. Journal of the Optical Society of America A 14, 9, 2379–2391.Google ScholarCross Ref
    52. Watson, A. 1987. The cortex transform: Rapid computation of simulated neural images. Computer Vision, Graphics, and Image Processing 39, 3, 311–327. Google ScholarDigital Library
    53. Whitaker, D., Steen, R., and Elliott, D. 1993. Light scatter in the normal young, elderly, and cataractous eye demonstrates little wavelength dependency. Optometry and Vision Science 70, 11, 963–968.Google ScholarCross Ref

ACM Digital Library Publication:

Overview Page: