“Global parametrization by incremental flattening” by Myles and Zorin

  • ©Ashish Myles and Denis Zorin




    Global parametrization by incremental flattening



    Global parametrization of surfaces requires singularities (cones) to keep distortion minimal. We describe a method for finding cone locations and angles and an algorithm for global parametrization which aim to produce seamless parametrizations with low metric distortion. The idea of the method is to evolve the metric of the surface, starting with the original metric so that a growing fraction of the area of the surface is constrained to have zero Gaussian curvature; the curvature becomes gradually concentrated at a small set of vertices which become cones. We demonstrate that the resulting parametrizations have significantly lower metric distortion compared to previously proposed methods.


    1. Ben-Chen, M., Gotsman, C., and Bunin, G. 2008. Conformal flattening by curvature prescription and metric scaling. Computer Graphics Forum 27, 2, 449–458.Google ScholarCross Ref
    2. Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-integer quadrangulation. ACM Trans. Graph. 28, 3, 77. Google ScholarDigital Library
    3. Bunin, G. 2008. A continuum theory for unstructured mesh generation in two dimensions. CAGD 25, 14–40. Google ScholarDigital Library
    4. Carr, N., Hoberock, J., Crane, K., and Hart, J. 2006. Rectangular multi-chart geometry images. In Symposium on Geometry Processing, Eurographics Association, 190. Google ScholarDigital Library
    5. Chao, I., Pinkall, U., Sanan, P., and Schröder, P. 2010. A simple geometric model for elastic deformations. ACM Trans. Graph. 29, 4 (July), 38:1–38:6. Google ScholarDigital Library
    6. Chen, Y., Davis, T. A., Hager, W. W., and Rajamanickam, S. 2008. Algorithm 887: CHOLMOD, supernodal sparse cholesky factorization and update/downdate. ACM Trans. Math. Softw. 35 (October), 22:1–22:14. Google ScholarDigital Library
    7. Crane, K., Desbrun, M., and Schröder, P. 2010. Trivial connections on discrete surfaces. Computer Graphics Forum 29, 5 (July), 1525–1533.Google ScholarCross Ref
    8. Daniels, J., Silva, C. T., and Cohen, E. 2009. Localized quadrilateral coarsening. Computer Graphics Forum 28, 5, 1437–1444. Google ScholarDigital Library
    9. Daniels II, J., Silva, C. T., and Cohen, E. 2009. Semiregular quadrilateralonly remeshing from simplified base domains. Computer Graphics Forum 28, 5 (July), 1427–1435. Google ScholarDigital Library
    10. Dong, S., Bremer, P., Garland, M., Pascucci, V., and Hart, J. 2006. Spectral surface quadrangulation. ACM Trans. Graph. 25, 3, 1057–1066. Google ScholarDigital Library
    11. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., and Stuetzle, W. 1995. Multiresolution analysis of arbitrary meshes. SIGGRAPH 1995, 173–182. Google ScholarDigital Library
    12. Erickson, J., and Whittlesey, K. 2005. Greedy optimal homotopy and homology generators. In Proc. ACM-SIAM Symposium on Discrete Algorithms, 1046. Google ScholarDigital Library
    13. Gu, X., and Yau, S.-T. 2003. Global conformal surface parameterization. In Proc. 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, SGP ’03, 127–137. Google ScholarDigital Library
    14. Gu, X., Gortler, S., and Hoppe, H. 2002. Geometry images. ACM Trans. Graph. 21, 3, 355–361. Google ScholarDigital Library
    15. Hertzmann, A., and Zorin, D. 2000. Illustrating smooth surfaces. In SIGGRAPH 2000, 517–526. Google ScholarDigital Library
    16. Hormann, K., Lévy, B., and Sheffer, A. 2007. Mesh parameterization: Theory and practice. SIGGRAPH Course Notes. Google ScholarDigital Library
    17. Jin, M., Wang, Y., Yau, S., and Gu, X. 2004. Optimal global conformal surface parameterization. In Proc. IEEE Visualization’04, 267–274. Google ScholarDigital Library
    18. Jin, M., Kim, J., Luo, F., and Gu, X. 2008. Discrete surface ricci flow. IEEE Trans. Visualization and Computer Graphics 14, 1030–1043. Google ScholarDigital Library
    19. Kälberer, F., Nieser, M., and Polthier, K. 2007. Quad-Cover: Surface Parameterization using Branched Coverings. Computer Graphics Forum 26, 3, 375–384.Google ScholarCross Ref
    20. Kharevych, L., Springborn, B., and Schröder, P. 2006. Discrete conformal mappings via circle patterns. ACM Trans. Graph. 25 (April), 412–438. Google ScholarDigital Library
    21. Khodakovsky, A., Litke, N., and Schröder, P. 2003. Globally smooth parameterizations with low distortion. ACM Trans. Graph. 22, 3, 350–357. Google ScholarDigital Library
    22. Kovacs, D., Myles, A., and Zorin, D. 2011. Anisotropic quadrangulation. Computer Aided Geometric Design 28, 8, 449–462. Solid and Physical Modeling 2010. Google ScholarDigital Library
    23. Lai, Y., Jin, M., Xie, X., He, Y., Palacios, J., Zhang, E., Hu, S., and Gu, X. 2009. Metric-driven rosy field design and remeshing. IEEE Trans. Visualization and Computer Graphics, 95–108. Google ScholarDigital Library
    24. Lee, A., Sweldens, W., Schröder, P., Cowsar, L., and Dobkin, D. 1998. MAPS: multiresolution adaptive parameterization of surfaces. In SIGGRAPH 1998, 95–104. Google ScholarDigital Library
    25. Lévy, B., Petitjean, S., Ray, N., and Maillot, J. 2002. Least squares conformal maps for automatic texture atlas generation. ACM Trans. Graph. 21, 3, 362–371. Google ScholarDigital Library
    26. Liu, L., Zhang, L., Xu, Y, Gotsman, C, and Gortler, S. J. 2008. A Local/Global approach to mesh parameterization. Computer Graphics Forum 27, 5 (July), 1495–1504. Google ScholarDigital Library
    27. Marinov, M., and Kobbelt, L. 2005. Automatic generation of structure preserving multiresolution models. Computer Graphics Forum 24, 3 (Sept.), 479–486.Google ScholarCross Ref
    28. Myles, A., Pietroni, N., Kovacs, D., and Zorin, D. 2010. Feature-aligned T-meshes. ACM Trans. Graph. 29, 4, 1–11. Google ScholarDigital Library
    29. Palacios, J., and Zhang, E. 2007. Rotational symmetry field design on surfaces. ACM Trans. Graph. 26, 3, 55. Google ScholarDigital Library
    30. Pietroni, N., Tarini, M., and Cignoni, P. 2009. Almost isometric mesh parameterization through abstract domains. IEEE Trans. Visualization and Computer Graphics 99, RapidPosts. Google ScholarDigital Library
    31. Ray, N., Li, W., Lévy, B., Sheffer, A., and Alliez, P. 2006. Periodic global parameterization. ACM Trans. Graph. 25, 4, 1460–1485. Google ScholarDigital Library
    32. Ray, N., Vallet, B., Li, W., and Lévy, B. 2008. N-Symmetry direction field design. ACM Trans. Graph. 27, 2. Google ScholarDigital Library
    33. Ray, N., Vallet, B., Alonso, L., and Levy, B. 2009. Geometry-aware direction field processing. ACM Trans. Graph. 29, 1, 1–11. Google ScholarDigital Library
    34. Sheffer, A., Praun, E., and Rose, K. 2006. Mesh parameterization methods and their applications. Foundations and Trends® in Computer Graphics and Vision 2, 2, 171. Google ScholarDigital Library
    35. Sorkine, O., Cohen-Or, D., Goldenthal, R., and Lischinski, D. 2002. Bounded-distortion piecewise mesh parameterization. In Proc. IEEE Visualization ’02, 355–362. Google ScholarDigital Library
    36. Springborn, B., Schröder, P., and Pinkall, U. 2008. Conformal equivalence of triangle meshes. ACM Trans. Graph. 27 (August), 77:1–77:11. Google ScholarDigital Library
    37. Tarini, M., Pietroni, N., Cignoni, P., Panozzo, D., and Puppo, E. 2010. Practical quad mesh simplification. Computer Graphics Forum 29, 2.Google ScholarCross Ref
    38. Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. 2006. Designing quadrangulations with discrete harmonic forms. Symposium on Geometry Processing, 201–210. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: