“Focus 3D: Compressive Accommodation Display” by Maimone, Wetzstein, Hirsch, Lanman, Raskar, et al. …

  • ©Andrew Maimone, Gordon Wetzstein, Matthew Hirsch, Douglas Lanman, Ramesh Raskar, and Henry Fuchs




    Focus 3D: Compressive Accommodation Display

Session/Category Title:   Displays




    We present a glasses-free 3D display design with the potential to provide viewers with nearly correct accommodative depth cues, as well as motion parallax and binocular cues. Building on multilayer attenuator and directional backlight architectures, the proposed design achieves the high angular resolution needed for accommodation by placing spatial light modulators about a large lens: one conjugate to the viewer’s eye, and one or more near the plane of the lens. Nonnegative tensor factorization is used to compress a high angular resolution light field into a set of masks that can be displayed on a pair of commodity LCD panels. By constraining the tensor factorization to preserve only those light rays seen by the viewer, we effectively steer narrow high-resolution viewing cones into the user’s eyes, allowing binocular disparity, motion parallax, and the potential for nearly correct accommodation over a wide field of view. We verify the design experimentally by focusing a camera at different depths about a prototype display, establish formal upper bounds on the design’s accommodation range and diffraction-limited performance, and discuss practical limitations that must be overcome to allow the device to be used with human observers.


    1. Akeley, K., Watt, S. J., Girshick, A. R., and Banks, M. S. 2004. A stereo display prototype with multiple focal distances. ACM Trans. Graph. 23, 804–813.
    2. Brott, R. and Schultz, J. 2010. Directional backlight lightguide considerations for full resolution autostereoscopic 3d displays. SID Symp. Digest Tech Papers 41, 1, 218–221.
    3. Chien, K.-W. and Shieh, H.-P. D. 2006. Time-multiplexed three-dimensional displays based on directional backlights with fast-switching liquid-crystal displays. Appl. Optics 45, 13, 3106–3110.
    4. Chu, Y. M., Chien, K. W., Shieh, H. P. D., Chang, J. M. A., Hu, Y. C. S., and Yang, V. 2005. 3D mobile display based on dual-directional light guides with a fast-switching liquid-crystal panel. J. Soc. Inf. Display 13, 10, 875–879.
    5. Cichocki, A., Zdunek, R., Phan, A. H., and Ichi Amari, S. 2009. Nonnegative Matrix and Tensor Factorizations. Wiley.
    6. Cossairt, O. S., Napoli, J., Hill, S. L., Dorval, R. K., and Favalora, G. E. 2007. Occlusion-capable multiview volumetric three-dimensional display. Appl. Optics 46, 8, 1244–1250.
    7. Favalora, G. E. 2005. Volumetric 3d displays and application infrastructure. IEEE Comput. 38, 37–44.
    8. Gotoda, H. 2010. A multilayer liquid crystal display for autosteroscopic 3D viewing. In Proceedings of the SPIE Conference on Stereoscopic Displays and Applications XXI. Vol. 7524. 1–8.
    9. Gotoda, H. 2011. Reduction of image blurring in an autostereoscopic multilayer liquid crystal display. In Proceedings of the SPIE Conference on Stereoscopic Displays and Applications XXII. Vol. 7863. 1–7.
    10. Hagood, N., Barton, R., Brosnihan, T., Fijol, J., Gandhi, J., Halfman, M., Payne, R., and Steyn, J. L. 2007. 35.5l: Late-news paper: A direct-view mems display for mobile applications. SID Symp. Digest Tech. Papers 38, 1, 1278–1281.
    11. Hecht, E. 2001. Optics, 4th ed. Addison-Wesley.
    12. Heide, F., Wetzstein, G., Raskar, R., and Heidrich, W. 2013. Adaptive image synthesis for compressive displays. In Proceedings of the ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques.
    13. Hoffman, D., Girshick, A., Akeley, K., and Banks, M. 2008. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. J. Vis. 8, 3, 33.
    14. Hoffman, D. M. and Banks, M. S. 2009. Stereo display with time-multiplexed focal adjustment. In Proceedings of the SPIE Conference on Stereoscopic Displays and Applications XX. Vol. 7237. 1–8.
    15. Hoffman, D. M. and Banks, M. S. 2010. Focus information is used to interpret binocular images. J. Vis. 10, 5, 13.
    16. Huang, F.-C., Lanman, D., Barsky, B. A., and Raskar, R. 2012. Correcting for optical aberrations using multilayer displays. ACM Trans. Graph. 31.
    17. Ives, F. E. 1903. Parallax stereogram and process of making same. U.S. Patent 725, 567.
    18. Jones, A., McDowall, I., Yamada, H., Bolas, M., and Debevec, P. 2007. Rendering for an interactive 360 degree light field display. ACM Trans. Graph. 26, 40:1–40:10.
    19. Kolda, T. G. and Bader, B. W. 2009. Tensor decompositions and applications. SIAM Rev. 51, 3, 455–500.
    20. Kwon, H. and Choi, H.-J. 2012. A time-sequential multiview autostereoscopic display without resolution loss using a multi-directional backlight unit and an lcd panel. In Proceedings of the SPIE Conference on Stereoscopic Displays and Applications XXIII. Vol. 8288. 1–6.
    21. Lanman, D., Hirsch, M., Kim, Y., and Raskar, R. 2010. Content-adaptive parallax barriers: Optimizing dual-layer 3d displays using low-rank light field factorization. ACM Trans. Graph. 29, 163:1–163:10.
    22. Lanman, D., Wetzstein, G., Hirsch, M., Heidrich, W., and Raskar, R. 2011. Polarization fields: Dynamic light field display using multi-layer lcds. ACM Trans. Graph. 30, 1–9.
    23. Lippmann, G. 1908. Epreuves reversibles donnant la sensation du relief. J. Phys. 7, 4, 821–825.
    24. Marwah, K., Wetzstein, G., Bando, Y., and Raskar, R. 2013. Compressive light field photography using overcomplete dictionaries and optimized projections. In Proceedings of the ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques.
    25. Mather, J., Barratt, N., Kean, D. U., Walton, E. J., and Bourhill, G. 2009. Directional backlight, a multiple view display and a multi-direction display. U.S. Patent Application 11/814, 383.
    26. Pamplona, V., Oliveira, M., Aliaga, D., and Raskar, R. 2012. Tailored displays to compensate for visual aberrations. ACM Trans. Graph. 31, 1–11.
    27. Perlin, K., Paxia, S., and Kollin, J. S. 2000. An autostereoscopic display. In Proceedings of the ACM SIGGRAPH Conference on Computer Graphics and Interactive Techniques. 319–326.
    28. Peterka, T., Kooima, R. L., Sandin, D. J., Johnson, A., Leigh, J., and Defanti, T. A. 2008. Advances in the dynallax solid-state dynamic parallax barrier autostereoscopic visualization display system. IEEE Trans. Vis. Comput. Graph. 14, 3, 487–499.
    29. Putilin, A. N., Lukianitsa, A. A., and Kanashin, K. 2001. Stereodisplay with neural network image processing. In Proceedings of the SPIE Conference on Advanced Display Technologies. Vol. 4511. 245–250.
    30. Shibata, T., Kawai, T., Ohta, K., Otsuki, M., Miyake, N., Yoshihara, Y., and Iwasaki, T. 2005. Stereoscopic 3d display with optical correction for the reduction of the discrepancy between accommodation and convergence. J. Soc. Inf. Display 13, 8, 665–671.
    31. Stolle, H., Olaya, J.-C., Buschbeck, S., Sahm, H., and Schwerdtner, A. 2008. Technical solutions for a full-resolution autostereoscopic 2d/3d display technology. In Proceedings of the SPIE Conference. 1–12.
    32. Sullivan, A. 2003. A solid-state multi-planar volumetric display. SID Symp. Digest Tech Papers 32, 207–211.
    33. Takaki, Y. 2006. High-density directional display for generating natural three-dimensional images. Proc. IEEE 94, 3.
    34. Takaki, Y., Tanaka, K., and Nakamura, J. 2011. Super multi-view display with a lower resolution flat-panel display. Optics Express 19, 5, 4129–4139.
    35. Toyooka, K., Miyashita, T., and Uchida, T. 2001. The 3d display using field-sequential lcd with light direction controlling back-light. SID Symp. Digest Tech Papers 32, 1, 174–177.
    36. Travis, A., Large, T., Emerton, N., and Bathiche, S. 2013. Wedge optics in flat panel displays. Proc. IEEE 101, 1, 45–60.
    37. Travis, A. R. L. 1990. Autostereoscopic 3-d display. Appl. Optics 29, 4341–4342.
    38. Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3d: Tomographic image synthesis for attenuation-based light field and high dynamic range displays. ACM Trans. Graph. 30, 1–11.
    39. Wetzstein, G., Lanman, D., Hirsch, M., and Raskar, R. 2012. Tensor displays: Compressive light field synthesis using multilayer displays with directional backlighting. ACM Trans. Graph. 31, 1–11.
    40. Zhang, W., Ye, Z., Zhao, T., Chen, Y., and Yu, F. 2007. Point spread function characteristics analysis of the wavefront coding system. Optics Express 15, 4, 1543–1552.
    41. Zwicker, M., Matusik, W., Durand, F., and Pfister, H. 2006. Antialiasing for automultiscopic 3d displays. In Proceedings of the Eurographics Symposium on Rendering Techniques.

ACM Digital Library Publication:

Overview Page: