“Filament based plasma” by Padilla, Gross, Knöppel, Chern, Pinkall, et al. …
Conference:
Type(s):
Title:
- Filament based plasma
Presenter(s)/Author(s):
Abstract:
Simulation of stellar atmospheres, such as that of our own sun, is a common task in CGI for scientific visualization, movies and games. A fibrous volumetric texture is a visually dominant feature of the solar corona—the plasma that extends from the solar surface into space. These coronal fibers can be modeled as magnetic filaments whose shape is governed by the magnetohydrostatic equation. The magnetic filaments provide a Lagrangian curve representation and their initial configuration can be prescribed by an artist or generated from magnetic flux given as a scalar texture on the sun’s surface. Subsequently, the shape of the filaments is determined based on a variational formulation. The output is a visual rendering of the whole sun. We demonstrate the fidelity of our method by comparing the resulting renderings with actual images of our sun’s corona.
References:
1. M. D. Altschuler and G. Newkirk. 1969. Magnetic Fields and the Structure of the Solar Corona. Sol. Phys. 9, 1 (1969), 131–149.Google ScholarCross Ref
2. A. Angelidis and F. Neyret. 2005. Simulation of Smoke based on Vortex Filament Primitives. In Proc. Symp. Comp. Anim. ACM, New York, NY, USA, 87–96.Google Scholar
3. B. Angles, D. Rebain, M. Macklin, B. Wyvill, L. Barthe, J. P. Lewis, J. von der Pahlen, S. Izadi, J. Valentin, S. Bouaziz, and A. Tagliasacchi. 2019. VIPER: Volume Invariant Position-Based Elastic Rods. Proc. ACM Comput. Graph. Interact. Tech. 2, 2 (2019), 19:1–19:26.Google Scholar
4. M. J. Aschwanden, K. Reardon, and D. B. Jess. 2016. Tracing the Chromospheric and Coronal Magnetic Field with AIA, IRIS, IBIS, and ROSA Data. Astrophys. J. 826, 1 (2016), 61.Google ScholarCross Ref
5. P. Boerner, C. Edwards, J. Lemen, A. Rausch, C. Schrijver, R. Shine, L. Shing, R. Stern, T. Tarbell, C. J. Wolfson, et al. 2012. Initial Calibration of the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Sol. Phys. 275, 1–2 (2012), 41–66.Google ScholarCross Ref
6. K. Borkiewicz, A. J. Christensen, D. Berry, C. Fluke, G. Shirah, and K. Elkins. 2019. Cinematic Scientific Visualization: The Art of Communicating Science. In SIGGRAPH Asia 2019 Courses. ACM, New York, NY, USA, Article 107, 313 pages.Google Scholar
7. CADENS. 2015. Solar Superstorms. Centrality of Advanced Digitally ENabled Science.Google Scholar
8. R. Chodura and A. Schlüter. 1981. A 3D code for MHD Equilibrium and Stability. J. Comput. Phys. 41, 1 (1981), 68–88.Google ScholarCross Ref
9. C. E. DeForest and C. C. Kankelborg. 2007. Fluxon Modeling of Low-Beta Plasmas. J. Atmos. Sol.-Terr. Phys. 69, 1 (2007), 116–128.Google ScholarCross Ref
10. V. Garcia, E. Debreuve, and M. Barlaud. 2008. Fast k Nearest Neighbor Search using GPU. In 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. IEEE, Anchorage, AK, USA, 1–6.Google Scholar
11. F. A. Gent, V. Fedun, S. J. Mumford, and R. Erdélyi. 2013. Magnetohydrostatic Equilibrium – I. Three-Dimensional Open Magnetic Flux Tube in the Stratified Solar Atmosphere. Mon. Notices Royal Astron. Soc. 435, 1 (2013), 689–697.Google ScholarCross Ref
12. J. Gómez, J. Blinn, D. Em, and S. Rueff. 2017. History of the JPL Computer Graphics Lab. ACM SIGGRAPH 2017 Panel.Google Scholar
13. H. Grad and H. Rubin. 1958. Hydromagnetic Equilibria and Force-Free Fields. J. nucl. Energy 7, 3–4 (1958), 284–285.Google Scholar
14. J. Gross, M. Köster, and A. Krüger. 2019. Fast and Efficient Nearest Neighbor Search for Particle Simulations. In Computer Graphics and Visual Computing (CGVC). The Eurographics Association, 55–63.Google Scholar
15. S. Hadap and N. Magnenat-Thalmann. 2001. Modeling Dynamic Hair as a Continuum. Comp. Graph. Forum 20, 3 (2001), 329–338.Google ScholarCross Ref
16. D. Hahn and C. Wojtan. 2015. High-Resolution Brittle Fracture Simulation with Boundary Elements. ACM Trans. Graph. 34, 4 (2015), 1–12.Google ScholarDigital Library
17. B. Inhester and T. Wiegelmann. 2006. Nonlinear Force-Free Magnetic Field Extrapolations: Comparison of the Grad Rubin and Wheatland Sturrock Roumeliotis Algorithm. Sol. Phys. 235, 1 (2006), 201–221.Google ScholarCross Ref
18. Å. M. Janse, B. C. Low, and E. N. Parker. 2010. Topological Complexity and Tangential Discontinuity in Magnetic Fields. Phys. Plasmas. 17, 9 (2010), 092901.Google ScholarCross Ref
19. R. Jonker and A. Volgenant. 1987. A Shortest Augmenting Path Algorithm for Dense and Sparse Linear Assignment Problems. Comp. 38, 4 (1987), 325–340.Google ScholarDigital Library
20. R. Kippenhahn and A. Schlüter. 1957. Eine Theorie der Solaren Filamente. Mit 7 Textabbildungen. Z. Astrophys. 43 (1957), 36–62.Google Scholar
21. R. Lionello, J. A. Linker, and Z. Mikić. 2008. Multispectral Emission of the Sun During the First Whole Sun Month: Magnetohydrodynamic Simulations. Astrophys. J. 690, 1 (2008), 902.Google ScholarCross Ref
22. B. C. Low. 1982. Magnetostatic atmospheres with variations in three dimensions. Astrophys. J. 263 (1982), 952–969.Google ScholarCross Ref
23. G. M. Machado, F. Sadlo, T. Müller, D. Müller, and T. Ertl. 2012. Visualizing Solar Dynamics Data. In Vision, Modeling and Visualization. The Eurographics Association, 95–102.Google Scholar
24. H. Moradi, C. Baldner, A. C. Birch, D. C. Braun, R. H. Cameron, T. L. Duvall, L. Gizon, D. Haber, S. M. Hanasoge, B. W. Hindman, J. Jackiewicz, E. Khomenko, R. Komm, P. Rajaguru, M. Rempel, M. Roth, R. Schlichenmaier, H. Schunker, H. C. Spruit, K. G. Strassmeier, M. J. Thompson, and S. Zharkov. 2010. Modeling the Subsurface Structure of Sunspots. Sol. Phys. 267, 1 (2010), 1–62.Google ScholarCross Ref
25. M. S. Nabizadeh, A. Chern, and R. Ramamoorthi. 2021. Kelvin Transformations for Simulations on Infinite Domains. ACM Trans. Graph. 40, 4 (2021), 97:1–97:15.Google ScholarDigital Library
26. J. P. Naiman, K. Borkiewicz, and A. J. Christensen. 2017. Houdini for Astrophysical Visualization. Publ. Astron. Soc. Pac. 129, 975 (2017), 058008.Google ScholarCross Ref
27. NASA Scientific Visualization Studio. 2018. The Dynamic Solar Magnetic Field with Introduction.Google Scholar
28. NASA Solar Dynamics Observatory. 2022. NASA AIA/HMI Data.Google Scholar
29. M. Negri. 2021. A Quasi-Static Model for Craquelure Patterns. In Mathematical Modeling in Cultural Heritage. Springer, Cham, 147–164.Google Scholar
30. M. Padilla, A. Chern, F. Knöppel, U. Pinkall, and P. Schröder. 2019. On Bubble Rings and Ink Chandeliers. ACM Trans. Graph. 38, 4 (2019), 129:1–129:14.Google ScholarDigital Library
31. E. N. Parker. 1994. Spontaneous Current Sheets in Magnetic Fields: With Applications to Stellar X-Rays. Vol. 1. Ox. U. P., New York, NY.Google Scholar
32. Y. Peng, B. Deng, J. Zhang, F. Geng, W. Qin, and L. Liu. 2018. Anderson Acceleration for Geometry Optimization and Physics Simulation. ACM Trans. Graph. 37, 4 (2018), 42:1–42:14.Google ScholarDigital Library
33. H. Peter, S. Bingert, and S. Kamio. 2012. Catastrophic Cooling and Cessation of Heating in the Solar Corona. Astron. Astrophys. 537 (2012), A152.Google ScholarCross Ref
34. E. R. Priest. 2014. Magnetohydrodynamics of the Sun. Cam. U. P.Google Scholar
35. E. R. Priest. 2019. Magnetohydrodynamics and Solar Dynamo Action. In The Sun as a Guide to Stellar Physics. Elsevier, 239–266.Google Scholar
36. C. Prior and A. R. Yeates. 2016a. Twisted Versus Braided Magnetic Flux Ropes in Coronal Geometry – I. Construction and Relaxation. Astron. Astrophys. 587 (2016), 15.Google Scholar
37. C. Prior and A. R. Yeates. 2016b. Twisted Versus Braided Magnetic Flux Ropes in Coronal Geometry – II. Comparative Behaviour. Astron. Astrophys. 591 (2016), 20.Google Scholar
38. L. A. Rachmeler, C. E. DeForest, and C. C. Kankelborg. 2009. Reconnectionless CME Eruption: Putting the Aly-Sturrock Conjecture to Rest. Astrophys. J. 693, 2 (2009), 1431–1436.Google ScholarCross Ref
39. F. Reale. 2014. Coronal Loops: Observations and Modeling of Confined Plasma. Living Rev. Sol. Phys. 11, 1 (2014), 1–94.Google ScholarCross Ref
40. F. Reale and G. Peres. 1999. TRACE-Derived Temperature and Emission Measure Profiles along Long-Lived Coronal Loops: The Role of Filamentation. Astrophys. J. Lett. 528, 1 (1999), L45.Google ScholarCross Ref
41. M. Reddiger and B. Poirier. 2020. On the Differentiation Lemma and the Reynolds Transport Theorem for Manifolds with Corners. arXiv:1906.03330 [math-ph]Google Scholar
42. R. Rosner, W. H. Tucker, and G. S. Vaiana. 1978. Dynamics of the Quiescent Solar Corona. Astrophys. J. 220 (1978), 643–645.Google ScholarCross Ref
43. T. Sakurai. 1982. Green’s Function Methods for Potential Magnetic Fields. Sol. Phys. 76, 2 (1982), 301–321.Google ScholarCross Ref
44. C. J. Schrijver and M. L. DeRosa. 2003. Photospheric and Heliospheric Magnetic Fields. Solar Physics 212, 1 (2003), 165–200.Google ScholarCross Ref
45. C. J. Schrijver, A. W. Sandman, M. J. Aschwanden, and M. L. De Rosa. 2005. Coronal Heating and the Appearance of Solar and Stellar Coronae. In 13th Cambridge Workshop on Cool Stars, Stellar Systems and the Sun, Vol. 560. European Space Agency, 65.Google Scholar
46. N. R. Sheeley, C. R. DeVore, and J. P. Boris. 1985. Simulations of the Mean Solar Magnetic Field During Sunspot Cycle 21. Sol. Phys. 98, 2 (1985), 219–239.Google ScholarCross Ref
47. D. Stansby, A. R. Yeates, and S. T. Badman. 2020. pfsspy: A Python Package for Potential Field Source Surface Modelling. J. Open Source Softw. 5, 54 (2020), 2732.Google ScholarCross Ref
48. V. S. Titov, C. Downs, Z. Mikić, T. Török, J. A. Linker, and R. M. Caplan. 2018. Regularized Biot-Savart Laws for Modeling Magnetic Flux Ropes. Astrophys. J. Lett. 852, 2 (2018), L21.Google ScholarCross Ref
49. R. Toader and C. Zanini. 2009. An Artificial Viscosity Approach to Quasistatic Crack Growth. Bolletino dell Unione Mat. Ital. 2, 1 (2009), 1–35.Google Scholar
50. H. P. Warren, N. A. Crump, I. Ugarte-Urra, X. Sun, M. J. Aschwanden, and T. Wiegelmann. 2018. Toward a Quantitative Comparison of Magnetic Field Extrapolations and Observed Coronal Loops. Astrophys. J. 860, 1 (2018), 46.Google ScholarCross Ref
51. S. Weißmann and U. Pinkall. 2010. Filament-based Smoke with Vortex Shedding and Variational Reconnection. ACM Trans. Graph. 29, 4 (2010), 115:1–12.Google ScholarDigital Library
52. T. Wiegelmann and S. K. Solanki. 2004a. Similarities and Differences between Coronal Holes and the Quiet Sun: Are Loop Statistics the Key? Sol. Phys. 225, 2 (2004), 227–247.Google ScholarCross Ref
53. T. Wiegelmann and S. K. Solanki. 2004b. Why Are Coronal Holes Indistinguishable from the Quiet Sun in Transition Region Radiation?. In SOHO 15 Coronal Heating, Vol. 575. European Space Agency, 35.Google Scholar
54. T. Williams, R. W. Walsh, A. R. Winebarger, D. H. Brooks, J. W. Cirtain, B. De Pontieu, L. Golub, K. Kobayashi, D. E. McKenzie, R. J. Morton, H. Peter, L. A. Rachmeler, S. L. Savage, P. Testa, S. K. Tiwari, H. P. Warren, and B. J. Watkinson. 2020. Is the High-Resolution Coronal Imager Resolving Coronal Strands? Results from AR 12712. Astrophys. J. 892, 2 (2020), 134.Google ScholarCross Ref
55. A. R. Winebarger, H. P. Warren, and D. A. Falconer. 2008. Modeling X-Ray Loops and EUV “Moss” in an Active Region Core. Astrophys. J. 676, 1 (2008), 672.Google ScholarCross Ref
56. A. R. Yeates. 2020. How Good is the Bipolar Approximation of Active Regions for Surface Flux Transport? Sol. Phys. 295, 9 (2020), 119.Google ScholarCross Ref
57. A. R. Yeates, T. Amari, I. Contopoulos, X. Feng, D. H. Mackay, Z. Mikić, T. Wiegelmann, J. Hutton, C. A. Lowder, H. Morgan, et al. 2018. Global Non-Potential Magnetic Models of the Solar Corona During the March 2015 Eclipse. Space Sci. Rev. 214, 5 (2018), 99.Google Scholar
58. C. Yu, H. Schumacher, and K. Crane. 2021. Repulsive Curves. ACM Trans. Graph. 40, 2 (2021), 268:1–268:19.Google ScholarDigital Library
59. J. Zhuleku, J. Warnecke, and H. Peter. 2020. Stellar Coronal X-ray Emission and Surface Magnetic Flux. Astron. Astrophys. 640 (2020), A119.Google ScholarCross Ref