“Feature-aligned T-meshes” by Myles, Pietroni, Kovacs and Zorin

  • ©Ashish Myles, Nico Pietroni, Denis Kovacs, and Denis Zorin

Conference:


Type:


Title:

    Feature-aligned T-meshes

Presenter(s)/Author(s):



Abstract:


    High-order and regularly sampled surface representations are more efficient and compact than general meshes and considerably simplify many geometric modeling and processing algorithms. A number of recent algorithms for conversion of arbitrary meshes to regularly sampled form (typically quadrangulation) aim to align the resulting mesh with feature lines of the geometry. While resulting in a substantial improvement in mesh quality, feature alignment makes it difficult to obtain coarse regular patch partitions of the mesh.In this paper, we propose an approach to constructing patch layouts consisting of small numbers of quadrilateral patches while maintaining good feature alignment. To achieve this, we use quadrilateral T-meshes, for which the intersection of two faces may not be the whole edge or vertex, but a part of an edge. T-meshes offer more flexibility for reduction of the number of patches and vertices in a base domain while maintaining alignment with geometric features. At the same time, T-meshes retain many desirable features of quadrangulations, allowing construction of high-order representations, easy packing of regularly sampled geometric data into textures, as well as supporting different types of discretizations for physical simulation.

References:


    1. Bazilevs, Y., Calo, V., Cottrell, J., Evans, J., Hughes, T., Lipton, S., Scott, M., and Sederberg, T. 2009. Isogeometric analysis using T-splines. Computer Methods in Applied Mechanics and Engineering.Google Scholar
    2. Ben-Chen, M., Gotsman, C., and Bunin, G. 2008. Conformal Flattening by Curvature Prescription and Metric Scaling. In Computer Graphics Forum, vol. 27, Blackwell Synergy, 449–458.Google Scholar
    3. Bommes, D., Zimmer, H., and Kobbelt, L. 2009. Mixed-integer quadrangulation. ACM Trans. Graph. 28, 3, 77. Google ScholarDigital Library
    4. Carr, N., Hoberock, J., Crane, K., and Hart, J. 2006. Rectangular multi-chart geometry images. In Symposium on Geometry Processing, Eurographics Association, 190. Google ScholarDigital Library
    5. Daniels, J., Silva, C., and Cohen, E. 2009. Semi-regular quadrilateral-only remeshing from simplified base domains. In Computer Graphics Forum, vol. 28, Blackwell Publishing Ltd, 1427–1435. Google ScholarDigital Library
    6. Daniels, J., Silva, C. T., and Cohen, E. 2009. Localized quadrilateral coarsening. Computer Graphics Forum 28, 5, 1437–1444.Google ScholarDigital Library
    7. Deng, J., Chen, F., Li, X., Hu, C., Tong, W., Yang, Z., and Feng, Y. 2008. Polynomial splines over hierarchical T-meshes. Graphical Models 70, 4, 76–86. Google ScholarDigital Library
    8. Dong, S., Bremer, P., Garland, M., Pascucci, V., and Hart, J. 2006. Spectral surface quadrangulation. ACM Trans. Graph. 25, 3, 1057–1066. Google ScholarDigital Library
    9. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., and Stuetzle, W. 1995. Multiresolution analysis of arbitrary meshes. Proceedings of the 22nd annual conference on Computer graphics and interactive techniques, 173–182. Google ScholarDigital Library
    10. Eppstein, D., and Erickson, J. 1999. Raising roofs, crashing cycles, and playing pool: Applications of a data structure for finding pairwise interactions. Discrete and Computational Geometry 22, 4, 569–592.Google ScholarCross Ref
    11. Gu, X., and Yau, S. 2003. Global conformal surface parameterization. Symposium on Geometry Processing, 127–137. Google ScholarDigital Library
    12. He, Y., Wang, K., Wang, H., Gu, X., and Qin, H. 2006. Manifold T-spline. Lecture Notes in Computer Science 4077, 409. Google ScholarDigital Library
    13. Hertzmann, A., and Zorin, D. 2000. Illustrating smooth surfaces. In Proceedings of the 27th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co., 517–526. Google ScholarDigital Library
    14. Hildebrandt, K., Polthier, K., and Wardetzky, M. 2005. Smooth feature lines on surface meshes. In Symposium on Geometry Processing, Eurographics Association, 85. Google ScholarDigital Library
    15. Hormann, K., Lévy, B., and Sheffer, A. 2007. Mesh parameterization: Theory and practice. SIGGRAPH Course Notes. Google ScholarDigital Library
    16. Huang, J., Zhang, M., Ma, J., Liu, X., Kobbelt, L., and Bao, H. 2008. Spectral quadrangulation with orientation and alignment control. In International Conference on Computer Graphics and Interactive Techniques, ACM New York, NY, USA. Google ScholarDigital Library
    17. Kälberer, F., Nieser, M., and Polthier, K. 2007. Quad-Cover: Surface Parameterization using Branched Coverings. Computer Graphics Forum 26, 3, 375–384.Google ScholarCross Ref
    18. Kalogerakis, E., Simari, P., Nowrouzezahrai, D., and Singh, K. 2007. Robust statistical estimation of curvature on discretized surfaces. In Symposium on Geometry Processing, 13–22. Google ScholarDigital Library
    19. Khodakovsky, A., Litke, N., and Schröder, P. 2003. Globally smooth parameterizations with low distortion. ACM Trans. Graph. 22, 3, 350–357. Google ScholarDigital Library
    20. Kovacs, D., Myles, A., and Zorin, D. 2009. Anisotropic harmonic quadrangulation. In Symposium on Geometry Processing 2009 Poster.Google Scholar
    21. Lee, A., Sweldens, W., Schröder, P., Cowsar, L., and Dobkin, D. 1998. MAPS: multiresolution adaptive parameterization of surfaces. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques, ACM New York, NY, USA, 95–104. Google ScholarDigital Library
    22. Li, W., Ray, N., and Lévy, B. 2006. Automatic and interactive mesh to T-spline conversion. In Symposium on Geometry Processing, Eurographics Association, 200. Google ScholarDigital Library
    23. Li, X., Deng, J., and Chen, F. 2007. Surface modeling with polynomial splines over hierarchical T-meshes. The Visual Computer 23, 12, 1027–1033. Google ScholarDigital Library
    24. Li, X., Deng, J., and Chen, F. 2009. Polynomial splines over general T-meshes. The Visual Computer, 1–10. Google ScholarDigital Library
    25. Marinov, M., and Kobbelt, L. 2005. Automatic generation of structure preserving multiresolution models. In Computer Graphics Forum, vol. 24, Amsterdam: North Holland, 1982-, 479–486.Google Scholar
    26. Ohtake, Y., Belyaev, A., and Seidel, H. 2004. Ridge-valley lines on meshes via implicit surface fitting. In International Conference on Computer Graphics and Interactive Techniques, ACM New York, NY, USA, 609–612. Google ScholarDigital Library
    27. Palacios, J., and Zhang, E. 2007. Rotational symmetry field design on surfaces. ACM Trans. Graph. 26, 3, 55. Google ScholarDigital Library
    28. Pietroni, N., Tarini, M., and Cignoni, P. 2009. Almost isometric mesh parameterization through abstract domains. IEEE Transactions on Visualization and Computer Graphics 99, RapidPosts. Google ScholarDigital Library
    29. Ray, N., Li, W., Lévy, B., Sheffer, A., and Alliez, P. 2006. Periodic global parameterization. ACM Trans. Graph. 25, 4, 1460–1485. Google ScholarDigital Library
    30. Ray, N., Vallet, B., Li, W., and Lévy, B. 2008. N-Symmetry Direction Field Design. ACM Trans. Graph. 27, 2. Google ScholarDigital Library
    31. Ray, N., Vallet, B., Alonso, L., and Levy, B. 2009. Geometry-aware direction field processing. ACM Trans. Graph. 29, 1, 1–11. Google ScholarDigital Library
    32. Sederberg, T., Zheng, J., Bakenov, A., and Nasri, A. 2003. T-splines and T-NURCCs. In ACM SIGGRAPH 2003 Papers, ACM, 484. Google ScholarDigital Library
    33. Sederberg, T., Cardon, D., Finnigan, G., North, N., Zheng, J., and Lyche, T. 2004. T-spline simplification and local refinement. ACM Trans. Graph. 23, 3, 276–283. Google ScholarDigital Library
    34. Sheffer, A., Praun, E., and Rose, K. 2006. Mesh parameterization methods and their applications. Foundations and Trends® in Computer Graphics and Vision 2, 2, 171. Google ScholarDigital Library
    35. Springborn, B., Schröder, P., and Pinkall, U. 2008. Conformal equivalence of triangle meshes.Google Scholar
    36. Tarini, M., Pietroni, N., Cignoni, P., Panozzo, D., and Puppo, E. 2010. Practical quad mesh simplification. Computer Graphics Forum 29, 2.Google ScholarCross Ref
    37. Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. 2006. Designing quadrangulations with discrete harmonic forms. Symposium on Geometry Processing, 201–210. Google ScholarDigital Library
    38. Torn, A., and Zilinskas, A. 1989. Global Optimization, volume 350 of. Lecture Notes in Computer Science. Google ScholarDigital Library
    39. Weinkauf, T., and Günther, D. 2009. Separatrix Persistence: Extraction of Salient Edges on Surfaces Using Topological Methods. In Computer Graphics Forum, vol. 28, Blackwell Publishing Ltd, 1519–1528. Google ScholarDigital Library


ACM Digital Library Publication:



Overview Page: