“Fast viscoelastic behavior with thin features” by Wojtan and Turk

  • ©Chris Wojtan and Greg Turk




    Fast viscoelastic behavior with thin features



    We introduce a method for efficiently animating a wide range of deformable materials. We combine a high resolution surface mesh with a tetrahedral finite element simulator that makes use of frequent re-meshing. This combination allows for fast and detailed simulations of complex elastic and plastic behavior. We significantly expand the range of physical parameters that can be simulated with a single technique, and the results are free from common artifacts such as volume-loss, smoothing, popping, and the absence of thin features like strands and sheets. Our decision to couple a high resolution surface with low-resolution physics leads to efficient simulation and detailed surface features, and our approach to creating the tetrahedral mesh leads to an order-of-magnitude speedup over previous techniques in the time spent re-meshing. We compute masses, collisions, and surface tension forces on the scale of the fine mesh, which helps avoid visual artifacts due to the differing mesh resolutions. The result is a method that can simulate a large array of different material behaviors with high resolution features in a short amount of time.


    1. Alliez, P., Cohen-Steiner, D., Yvinec, M., and Desbrun, M. 2005. Variational tetrahedral meshing. ACM Trans. Graph. 24, 3, 617–625. Google ScholarDigital Library
    2. Bargteil, A. W., Goktekin, T. G., O’Brien, J. F., and Strain, J. A. 2006. A semi-Lagrangian contouring method for fluid simulation. ACM Trans. Graph. 25, 1, 19–38. Google ScholarDigital Library
    3. Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. ACM Trans. Graph. 26, 3, 16:1–16:8. Google ScholarDigital Library
    4. Batty, C., Bertails, F., and Bridson, R. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph. 26, 3, 100:1–100:7. Google ScholarDigital Library
    5. Botsch, M., Pauly, M., Wicke, M., and Gross, M. 2007. Adaptive space deformations based on rigid cells. Computer Graphics Forum 26, 3, 339–347.Google ScholarCross Ref
    6. Bridson, R., Fedkiw, R., and Anderson, J. 2002. Robust treatment of collisions, contact and friction for cloth animation. ACM Trans. Graph. 21, 3, 594–603. Google ScholarDigital Library
    7. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Proc. Symposium on Computer Animation, 28–36. Google ScholarDigital Library
    8. Brochu, T. 2006. Fluid Animation with Explicit Surface Meshes and Boundary-Only Dynamics. Master’s thesis, University of British Columbia.Google Scholar
    9. Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002. Interactive skeleton-driven dynamic deformations. ACM Trans. Graph. 21, 3, 586–593. Google ScholarDigital Library
    10. Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002. A multiresolution framework for dynamic deformations. In Proc. Symposium on Computer Animation, 41–47. Google ScholarDigital Library
    11. Chentanez, N., Feldman, B. E., Labelle, F., O’Brien, J. F., and Shewchuk, J. 2007. Liquid simulation on lattice-based tetrahedral meshes. In Proc. Symposium on Computer Animation, 219–228. Google ScholarDigital Library
    12. Clavet, S., Beaudoin, P., and Poulin, P. 2005. Particle-based viscoelastic fluid simulation. In Proc. Symposium on Computer Animation, 219–228. Google ScholarDigital Library
    13. Desbrun, M., Meyer, M., Schröder, P., and Barr, A. 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. Proc. SIGGRAPH, 317–324. Google ScholarDigital Library
    14. Enright, D., Losasso, F., and Fedkiw, R. 2005. A fast and accurate semi-Lagrangian particle level set method. Computers and Structures 83, 479–490. Google ScholarDigital Library
    15. Faloutsos, P., van de Panne, M., and Terzopoulos, D. 1997. Dynamic free-form deformations for animation synthesis. IEEE TVCG 3, 3, 201–214. Google ScholarDigital Library
    16. Galoppo, N., Otaduy, M., Mecklenburg, P., Gross, M., and Lin, M. 2006. Fast simulation of deformable models in contact using dynamic deformation textures. In Proc. Symp. on Computer Animation, 73–82. Google ScholarDigital Library
    17. Goktekin, T. G., Bargteil, A. W., and O’Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. 23, 3, 463–468. Google ScholarDigital Library
    18. Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Proc. Symposium on Computer Animation, 131–140. Google ScholarDigital Library
    19. Irving, G., Schroeder, C., and Fedkiw, R. 2007. Volume conserving finite element simulations of deformable models. ACM Trans. Graph. 26, 3, 13:1–13:6. Google ScholarDigital Library
    20. Jiao, X. 2007. Face offsetting: A unified approach for explicit moving interfaces. J. Comput. Phys. 220, 2, 612–625. Google ScholarDigital Library
    21. Keiser, R., Adams, B., Gasser, D., Bazzi, P., Dutré, P., and Gross, M. 2005. A unified Lagrangian approach to solid-fluid animation. In the Proceedings of Eurographics Symposium on Point-based Graphics, 125–133. Google ScholarCross Ref
    22. Labelle, F., and Shewchuk, J. R. 2007. Isosurface stuffing: fast tetrahedral meshes with good dihedral angles. ACM Trans. Graph. 26, 3, 57:1–57:10. Google ScholarDigital Library
    23. Lien, S., and Kajiya., J. T. 1984. A symbolic method for calculating the integral properties of arbitrary nonconvex polyhedra. IEEE CG&A 4, 10 (October), 35–41.Google Scholar
    24. Lindstrom, P., and Turk, G. 1999. Evaluation of memoryless simplification. IEEE TVCG 5, 2, 98–115. Google ScholarDigital Library
    25. Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006. Multiple interacting liquids. ACM Trans. Graph. 25, 3, 812–819. Google ScholarDigital Library
    26. Molino, N., Bridson, R., Teran, J., And Fedkiw, R. 2003. A crystalline, red green strategy for meshing highly deformable objects with tetrahedra. In IMR, 103–114.Google Scholar
    27. Molino, N., Bao, Z., and Fedkiw, R. 2004. A virtual node algorithm for changing mesh topology during simulation. ACM Trans. Graph. 23, 3, 385–392. Google ScholarDigital Library
    28. Mullen, P., McKenzie, A., Tong, Y., and Desbrun, M. 2007. A variational approach to eulerian geometry processing. ACM Trans. Graph. 26, 3, 66. Google ScholarDigital Library
    29. Müller, M., and Gross, M. 2004. Interactive virtual materials. In the Proccedings of Graphics Interface, 239–246. Google ScholarDigital Library
    30. Müller, M., Dorsey, J., McMillan, L., Jagnow, R., and Cutler, B. 2002. Stable real-time deformations. In Proc. Symposium on Computer Animation, 49–54. Google ScholarDigital Library
    31. Müller, M., Keiser, R., Nealen, A., Pauly, M., Gross, M., and Alexa, M. 2004. Point based animation of elastic, plastic and melting objects. In Proc. Symposium on Computer Animation, 141–151. Google ScholarDigital Library
    32. Müller, M., Teschner, M., and Gross, M. 2004. Physically-based simulation of objects represented by surface meshes. In Computer Graphics International, 26–33. Google ScholarCross Ref
    33. Müller, M., Heidelberger, B., Teschner, M., and Gross, M. 2005. Meshless deformations based on shape matching. ACM Trans. Graph. 24, 3, 471–478. Google ScholarDigital Library
    34. Nooruddin, F. S., and Turk, G. 2003. Simplification and repair of polygonal models using volumetric techniques. IEEE Transactions on Visualization and Computer Graphics 9, 2, 191–205. Google ScholarDigital Library
    35. O’Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In the Proceedings of ACM SIGGRAPH 99, 137–146. Google ScholarDigital Library
    36. O’Brien, J. F., Bargteil, A. W., and Hodgins, J. K. 2002. Graphical modeling and animation of ductile fracture. ACM Trans. Graph. 21, 3, 291–294. Google ScholarDigital Library
    37. Pauly, M., Keiser, R., Adams, B., Dutré;, P., Gross, M., and Guibas, L. J. 2005. Meshless animation of fracturing solids. ACM Trans. Graph. 24, 3, 957–964. Google ScholarDigital Library
    38. Reynolds, C. W., 1992. Adaptive polyhedral resampling for vertex flow animation, unpublished. http://www.red3d.com/cwr/papers/1992/df.html.Google Scholar
    39. Rivers, A. R., and James, D. L. 2007. Fastlsm: fast lattice shape matching for robust real-time deformation. ACM Trans. Graph. 26, 3, 82:1–82:6. Google ScholarDigital Library
    40. Sederberg, T. W., and Parry, S. R. 1986. Free-form deformation of solid geometric models. SIGGRAPH Comput. Graph. 20, 4, 151–160. Google ScholarDigital Library
    41. Shewchuk, J. R. 2002. What is a good linear element? interpolation, conditioning, and quality measures. In 11th Int. Meshing Roundtable, 115–126.Google Scholar
    42. Sifakis, E., Der, K. G., and Fedkiw, R. 2007. Arbitrary cutting of deformable tetrahedralized objects. In Proc. Symposium on Computer Animation, 73–80. Google ScholarDigital Library
    43. Sifakis, E., Shinar, T., Irving, G., and Fedkiw, R. 2007. Hybrid simulation of deformable solids. In Proc. Symposium on Computer Animation, 81–90. Google ScholarDigital Library
    44. Terzopoulos, D., and Fleischer, K. 1988. Deformable models. The Visual Computer 4, 306–331.Google ScholarCross Ref
    45. Terzopoulos, D., and Fleischer, K. 1988. Modeling inelastic deformation: Viscoelasticity, plasticity, fracture. In the Proceedings of ACM SIGGRAPH 1988, 269–278. Google ScholarDigital Library
    46. Terzopoulos, D., Platt, J., and Fleischer, K. 1989. Heating and melting deformable models (from goop to glop). In the Proceedings of Graphics Interface, 219–226.Google Scholar

ACM Digital Library Publication:

Overview Page: