“Fabricating BRDFs at high spatial resolution using wave optics” by Levin, Xiong, Durand, Freeman, Matusik, et al. …

  • ©Anat Levin, Ying Xiong, Frédo Durand, William T. Freeman, Wojciech Matusik, and Todd Zickler




    Fabricating BRDFs at high spatial resolution using wave optics

Session/Category Title: Appearance Fabrication




    Recent attempts to fabricate surfaces with custom reflectance functions boast impressive angular resolution, yet their spatial resolution is limited. In this paper we present a method to construct spatially varying reflectance at a high resolution of up to 220dpi, orders of magnitude greater than previous attempts, albeit with a lower angular resolution. The resolution of previous approaches is limited by the machining, but more fundamentally, by the geometric optics model on which they are built. Beyond a certain scale geometric optics models break down and wave effects must be taken into account. We present an analysis of incoherent reflectance based on wave optics and gain important insights into reflectance design. We further suggest and demonstrate a practical method, which takes into account the limitations of existing micro-fabrication techniques such as photolithography to design and fabricate a range of reflection effects, based on wave interference.


    1. Alldrin, N., and Kriegman., D. 2006. A planar light probe. In CVPR, 2324–2330. Google ScholarDigital Library
    2. Ashikhmin, M., Premoze, S., and Shirley, P. 2000. A microfacet-based BRDF generator. In ACM SIGGRAPH, 65–74. Google ScholarDigital Library
    3. Beckmann, P., and Spizzichino, A. 1963. The scattering of electromagnetic waves from rough surfaces. International series of monographs on electromagnetic waves. Pergamon Press.Google Scholar
    4. Benton, S. A., and Bove, V. M. 2008. Holographic Imaging. Wiley-Interscience. Google ScholarDigital Library
    5. Cuypers, T., Haber, T., Bekaert, P., Oh, S. B., and Raskar, R. 2012. Reflectance model for diffraction. ACM Trans. Graph. 31, 5, 122. Google ScholarDigital Library
    6. Dong, Y., Wang, J., Pellacini, F., Tong, X., and Guo, B. 2010. Fabricating spatially-varying subsurface scattering. ACM Trans. Graph. 29, 4 (July), 62:1–62:10. Google ScholarDigital Library
    7. Finckh, M., Dammertz, H., and Lensch, H. P. A. 2010. Geometry construction from caustic images. In ECCV, Springer-Verlag, 464–477. Google ScholarDigital Library
    8. Goodman, J. W. 1968. Introduction to Fourier Optics. McGraw-Hill Book Company.Google Scholar
    9. Hašan, M., Fuchs, M., Matusik, W., Pfister, H., and Rusinkiewicz, S. 2010. Physical reproduction of materials with specified subsurface scattering. ACM SIGGRAPH 29, 3, 61:1–61:10. Google ScholarDigital Library
    10. He, X. D., Torrance, K. E., Sillion, F. X., and Greenberg, D. P. 1991. A comprehensive physical model for light reflection. SIGGRAPH 25, 4, 175–186. Google ScholarDigital Library
    11. Iwata, F., and Tsujiuchi, J. 1974. Characteristics of a photoresist hologram and its replica. Appl. Opt. 13, 6 (Jun), 1327–1336.Google Scholar
    12. Johnson, M. K., Cole, F., Raj, A., and Adelson, E. H. 2011. Microgeometry capture using an elastomeric sensor. ACM SIGGRAPH 30, 4, 46:1–46:8. Google ScholarDigital Library
    13. Kiser, T., Eigensatz, M., Nguyen, M. M., Bompas, P., and Pauly, M. 2012. Architectural caustics controlling light with geometry. In Advances in Architectural Geometry.Google Scholar
    14. Koenderink, J., Doorn, A. V., Dana, K., and Nayar, S. 1999. Bidirectional Reflectance Distribution Function of Thoroughly Pitted Surfaces. ICCV 31, 2/3, 129–144. Google ScholarDigital Library
    15. Kress, B. C., and Meyrueis, P. 2009. Dynamic Digital Optics. John Wiley & Sons, Ltd, 217–252.Google Scholar
    16. Levin, A., Glasner, D., Xiong, Y., Durand, F., Freeman, W., Matusik, W., and Zickler, T. 2013. High spatial resolution BRDFs with metallic powders using wave optics analysis. MIT CSAIL TR 2013–008.Google Scholar
    17. Lucente, M., and Galyean, T. A. 1995. Rendering interactive holographic images. In SIGGRAPH, 387–394. Google ScholarDigital Library
    18. Malzbender, T., Samadani, R., Scher, S., Crume, A., Dunn, D., and Davis, J. 2012. Printing reflectance functions. ACM Trans. Graph. 31, 3, 20:1–20:11. Google ScholarDigital Library
    19. Matsushima, K. 2005. Computer-generated holograms for three-dimensional surface objects with shade and texture. Appl. Opt. 44, 22 (Aug), 4607–4614.Google ScholarCross Ref
    20. Matusik, W., Ajdin, B., Gu, J., Lawrence, J., Lensch, H. P., Pellacini, F., and Rusinkiewicz, S. 2009. Printing spatially-varying reflectance. ACM SIGGRAPH Asia 28, 5 (Dec.), 128:1–128:9. Google ScholarDigital Library
    21. Nayar, S., K. Ikeuchi, and Kanade, T. 1991. Surface Reflection: Physical and Geometrical Perspectives. PAMI 13, 7 (Jul), 611–634. Google ScholarDigital Library
    22. Oren, M., and Nayar, S. 1994. Generalization of Lambert’s Reflectance Model. In ACM SIGGRAPH, 239–246. Google ScholarDigital Library
    23. Papas, M., Jarosz, W., Jakob, W., Rusinkiewicz, S., Matusik, W., and Weyrich, T. 2011. Goal-based caustics. Eurographics 30, 2 (Apr.), 503–511.Google ScholarCross Ref
    24. Patow, G., and Pueyo, X. 2005. A survey of inverse surface design from light transport behavior specification. Comput. Graph. Forum 24, 4, 773–789.Google ScholarCross Ref
    25. Patow, G., Pueyo, X., and Vinacua, A. 2007. User-guided inverse reflector design. Comput. Graph. 31, 3 (June), 501–515. Google ScholarDigital Library
    26. Pont, S. C., and Koenderink, J. J. 2005. Reflectance from locally glossy thoroughly pitted surfaces. Computer Vision and Image Understanding 98, 2, 211–222. Google ScholarDigital Library
    27. Ren, P., Wang, J., Snyder, J., Tong, X., and Guo, B. 2011. Pocket reflectometry. In ACM SIGGRAPH, 45:1–45:10. Google ScholarDigital Library
    28. Rusinkiewicz, S. 1998. A new change of variables for efficient BRDF representation. In Rendering Techniques (Proc. Eurographics Workshop on Rendering).Google ScholarCross Ref
    29. Sancer, M. 1969. Shadow-corrected electromagnetic scattering from a randomly rough surface. IEEE Transactions on Antennas and Propagation 17, 5 (sep), 577–585.Google ScholarCross Ref
    30. Sinzinger, S., and Jahns, J. 2006. Microoptics. John Wiley and Sons.Google Scholar
    31. Stam, J. 1999. Diffraction shaders. In ACM SIGGRAPH, 101–110. Google ScholarDigital Library
    32. Torrance, K. E., and Sparrow, E. M. 1967. Theory for off-specular reflection from roughened surfaces. J. Opt. Soc. Am. 57, 9 (Sep), 1105–1112.Google ScholarCross Ref
    33. Tumblin, J., Agrawal, A., and Raskar, R. 2005. Why i want a gradient camera. In CVPR, vol. 1, IEEE, 103–110. Google ScholarDigital Library
    34. Ulichney, R. 1987. Digital halftoning. MIT press. Google ScholarDigital Library
    35. Walker, S. J., and Jahns, J. 1990. Array generation with multilevel phase gratings. J. Opt. Soc. Am. A 7, 8 (Aug), 1509–1513.Google ScholarCross Ref
    36. Westin, S. H., Arvo, J. R., and Torrance, K. E. 1992. Predicting reflectance functions from complex surfaces. In ACM SIGGRAPH, 255–264. Google ScholarDigital Library
    37. Weyrich, T., Deng, J., Barnes, C., Rusinkiewicz, S., and Finkelstein, A. 2007. Digital bas-relief from 3D scenes. ACM Transactions on Graphics (Proc. SIGGRAPH) 26, 3 (Aug.). Google ScholarDigital Library
    38. Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. ACM SIGGRAPH 28, 3 (Aug.), 32:1–32:6. Google ScholarDigital Library
    39. Wolff, L., Nayar, S., and Oren, M. 1998. Improved Diffuse Reflection Models for Computer Vision. IJCV 30, 1 (Oct), 55–71. Google ScholarDigital Library
    40. Yaroslavsky, L. 2004. Digital Holography and Digital Image Processing. Kluwer Academic Publishers.Google Scholar
    41. Ziegler, R., Bucheli, S., Ahrenberg, L., Magnor, M. A., and Gross, M. H. 2007. A bidirectional light field – hologram transform. Comput. Graph. Forum 26, 3, 435–446.Google ScholarCross Ref

ACM Digital Library Publication:

Overview Page: