“Eyeglasses-free display: towards correcting visual aberrations with computational light field displays” by Huang, Wetzstein, Barsky and Raskar

  • ©Fu-Chung Huang, Gordon Wetzstein, Brian A. Barsky, and Ramesh Raskar




    Eyeglasses-free display: towards correcting visual aberrations with computational light field displays

Session/Category Title: Displays




    Millions of people worldwide need glasses or contact lenses to see or read properly. We introduce a computational display technology that predistorts the presented content for an observer, so that the target image is perceived without the need for eyewear. By designing optics in concert with prefiltering algorithms, the proposed display architecture achieves significantly higher resolution and contrast than prior approaches to vision-correcting image display. We demonstrate that inexpensive light field displays driven by efficient implementations of 4D prefiltering algorithms can produce the desired vision-corrected imagery, even for higher-order aberrations that are difficult to be corrected with glasses. The proposed computational display architecture is evaluated in simulation and with a low-cost prototype device.


    1. Akeley, K., Watt, S. J., Girshick, A. R., and Banks, M. S. 2004. A stereo display prototype with multiple focal distances. ACM Trans. Graph. (SIGGRAPH) 23, 3, 804–813. Google ScholarDigital Library
    2. Alonso Jr., M., and Barreto, A. B. 2003. Pre-compensation for high-order aberrations of the human eye using on-screen image deconvolution. In IEEE Engineering in Medicine and Biology Society, vol. 1, 556–559.Google ScholarCross Ref
    3. Archand, P., Pite, E., Guillemet, H., and Trocme, L., 2011. Systems and methods for rendering a display to compensate for a viewer’s visual impairment. International Patent Application PCT/US2011/039993.Google Scholar
    4. Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C. 1995. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16, 5 (Sept.), 1190–1208. Google ScholarDigital Library
    5. Chai, J.-X., Tong, X., Chan, S.-C., and Shum, H.-Y. 2000. Plenoptic sampling. In ACM SIGGRAPH, 307–318. Google ScholarDigital Library
    6. Cossairt, O. S., Napoli, J., Hill, S. L., Dorval, R. K., and Favalora, G. E. 2007. Occlusion-capable multiview volumetric three-dimensional display. Applied Optics 46, 8, 1244–1250.Google ScholarCross Ref
    7. Durand, F., Holzschuch, N., Soler, C., Chan, E., and Sillion, F. X. 2005. A frequency analysis of light transport. In Proc. SIGGRAPH, 1115–1126. Google ScholarDigital Library
    8. Gortler, S. J., Grzeszczuk, R., Szeliski, R., and Cohen, M. F. 1996. The lumigraph. In Proc. SIGGRAPH, SIGGRAPH ’96, 43–54. Google ScholarDigital Library
    9. Hecht, E. 2001. Optics (Fourth Edition). Addison-Wesley.Google Scholar
    10. Hirsch, M., Wetzstein, G., and Raskar, R. 2014. A compressive light field projection system. ACM Trans. Graph. (SIGGRAPH) 33. Google ScholarDigital Library
    11. Huang, F.-C., and Barsky, B. 2011. A framework for aberration compensated displays. Tech. Rep. UCB/EECS-2011-162, University of California, Berkeley, December.Google Scholar
    12. Huang, F.-C., Lanman, D., Barsky, B. A., and Raskar, R. 2012. Correcting for optical aberrations using multilayer displays. ACM Trans. Graph. (SIGGRAPH Asia) 31, 6, 185:1–185:12. Google ScholarDigital Library
    13. Ives, F. E., 1903. Parallax stereogram and process of making same. U.S. Patent 725,567.Google Scholar
    14. Jones, A., McDowall, I., Yamada, H., Bolas, M., and Debevec, P. 2007. Rendering for an interactive 360° light field display. ACM Trans. Graph. (SIGGRAPH) 26, 40:1–40:10. Google ScholarDigital Library
    15. Lanman, D., and Luebke, D. 2013. Near-eye light field displays. ACM Trans. Graph. (SIGGRAPH Asia) 32, 6, 220:1–220:10. Google ScholarDigital Library
    16. Lanman, D., Hirsch, M., Kim, Y., and Raskar, R. 2010. Content-adaptive parallax barriers: optimizing dual-layer 3D displays using low-rank light field factorization. ACM Trans. Graph. 29, 163:1–163:10. Google ScholarDigital Library
    17. Levin, A., Hasinoff, S. W., Green, P., Durand, F., and Freeman, W. T. 2009. 4D frequency analysis of computational cameras for depth of field extension. ACM Trans. Graph. (SIGGRAPH) 28, 3. Google ScholarDigital Library
    18. Levoy, M., and Hanrahan, P. 1996. Light field rendering. In Proc. SIGGRAPH, 31–42. Google ScholarDigital Library
    19. Lippmann, G. 1908. Épreuves réversibles donnant la sensation du relief. Journal of Physics 7, 4, 821–825.Google Scholar
    20. Love, G., Hoffman, D., Hands, P., Gao, J., Kirby, A., and Banks, M. 2009. High-speed switchable lens enables the development of a volumetric stereoscopic display. Optics Express 17, 15716–15725.Google ScholarCross Ref
    21. Maimone, A., Wetzstein, G., Hirsch, M., Lanman, D., Raskar, R., and Fuchs, H. 2013. Focus 3d: Compressive accommodation display. ACM Trans. Graph. 32, 5, 153:1–153:13. Google ScholarDigital Library
    22. Mantiuk, R., Kim, K. J., Rempel, A. G., and Heidrich, W. 2011. Hdr-vdp-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions. In Proc. ACM SIGGRAPH, 40:1–40:14. Google ScholarDigital Library
    23. Masia, B., Wetzstein, G., Didyk, P., and Gutierrez, D. 2013. A survey on computational displays: Pushing the boundaries of optics, computation, and perception. Computers & Graphics 37, 8, 1012–1038. Google ScholarDigital Library
    24. Ng, R., and Hanrahan, P. 2006. Digital correction of lens aberrations in light field photography. In Proc. SPIE International Optical Design.Google Scholar
    25. Ng, R. 2005. Fourier slice photography. In ACM SIGGRAPH 2005 Papers, ACM, New York, NY, USA, SIGGRAPH ’05, 735–744. Google ScholarDigital Library
    26. Pamplona, V. F., Mohan, A., Oliveira, M. M., and Raskar, R. 2010. Netra: interactive display for estimating refractive errors and focal range. ACM Trans. Graph. (SIGGRAPH) 29, 77:1–77:8. Google ScholarDigital Library
    27. Pamplona, V. F., Passos, E. B., Zizka, J., Oliveira, M. M., Lawson, E., Clua, E., and Raskar, R. 2011. Catra: interactive measuring and modeling of cataracts. ACM Trans. Graph. (SIGGRAPH) 30, 4, 47:1–47:8. Google ScholarDigital Library
    28. Pamplona, V., Oliveira, M., Aliaga, D., and Raskar, R. 2012. Tailored displays to compensate for visual aberrations. ACM Trans. Graph. (SIGGRAPH) 31. Google ScholarDigital Library
    29. Ramamoorthi, R., Mahajan, D., and Belhumeur, P. 2007. A first-order analysis of lighting, shading, and shadows. ACM Trans. Graph. 26, 1. Google ScholarDigital Library
    30. Takaki, Y. 2006. High-Density Directional Display for Generating Natural Three-Dimensional Images. Proc. IEEE 94, 3.Google ScholarCross Ref
    31. Vitale, S., Sperduto, R. D., and Ferris, III, F. L. 2009. Increased prevalence of myopia in the United States between 1971–1972 and 1999–2004. Arch. Ophthalmology 127, 12, 1632–1639.Google ScholarCross Ref
    32. Wetzstein, G., Lanman, D., Heidrich, W., and Raskar, R. 2011. Layered 3D: tomographic image synthesis for attenuation-based light field and high dynamic range displays. ACM Trans. Graph. (SIGGRAPH) 30, 4. Google ScholarDigital Library
    33. Wetzstein, G., Lanman, D., Hirsch, M., and Raskar, R. 2012. Tensor displays: Compressive light field synthesis using multilayer displays with directional backlighting. ACM Trans. Graph. (SIGGRAPH) 31. Google ScholarDigital Library
    34. Wong, T. Y., Foster, P. J., Hee, J., Ng, T. P., Tielsch, J. M., Chew, S. J., Johnson, G. J., and Seah, S. K. 2000. Prevalence and risk factors for refractive errors in adult chinese in singapore. Invest Ophthalmol Vis Sci 41, 9, 2486–94.Google Scholar
    35. Yellott, J. I., and Yellott, J. W. 2007. Correcting spurious resolution in defocused images. Proc. SPIE 6492.Google Scholar

ACM Digital Library Publication:

Overview Page: