“Example-based elastic materials” by Martin, Thomaszewski, Grinspun and Gross

  • ©Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun, and Markus Gross




    Example-based elastic materials



    We propose an example-based approach for simulating complex elastic material behavior. Supplied with a few poses that characterize a given object, our system starts by constructing a space of prefered deformations by means of interpolation. During simulation, this example manifold then acts as an additional elastic attractor that guides the object towards its space of prefered shapes. Added on top of existing solid simulation codes, this example potential effectively allows us to implement inhomogeneous and anisotropic materials in a direct and intuitive way. Due to its example-based interface, our method promotes an art-directed approach to solid simulation, which we exemplify on a set of practical examples.


    1. Alexa, M., Cohen-Or, D., and Levin, D. 2000. As-Rigid-As-Possible Shape Interpolation. In Proc. of ACM SIGGRAPH ’00, 157–164. Google ScholarDigital Library
    2. Baran, I., Vlasic, D., Grinspun, E., and Popović, J. 2009. Semantic deformation transfer. In Proc. of ACM SIGGRAPH ’09, 36:1–36:6. Google Scholar
    3. Barbič, J., and Popović, J. Real-time control of physically based simulations using gentle forces. Proc. of ACM SIGGRAPH Asia ’08, 163:1–163:10. Google Scholar
    4. Barbič, J., da Silva, M., and Popović, J. 2009. Deformable object animation using reduced optimal control. In Proc. of ACM SIGGRAPH ’09, 53:1–53:9. Google Scholar
    5. Bargteil, A. W., Wojtan, C., Hodgins, J. K., and Turk, G. 2007. A finite element method for animating large viscoplastic flow. In Proc. of ACM SIGGRAPH ’07, 16:1–16:8. Google Scholar
    6. Bergou, M., Mathur, S., Wardetzky, M., and Grinspun, E. 2007. Tracks: toward directable thin shells. In Proc. of ACM SIGGRAPH ’07, 50:1–50:10. Google Scholar
    7. Bickel, B., Bächer, M., Otaduy, M. A., Matusik, W., Pfister, H., and Gross, M. 2009. Capture and modeling of non-linear heterogeneous soft tissue. In Proc. of ACM SIGGRAPH ’09, 89:1–89:9. Google Scholar
    8. Bonet, J., and Wood, R. D. 1997. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge Univ. Press.Google Scholar
    9. Botsch, M., Pauly, M., Gross, M., and Kobbelt, L. 2006. PriMo: coupled prisms for intuitive surface modeling. In Proc. of Symp. on Geometry Processing ’06, 11–20. Google ScholarDigital Library
    10. Chao, I., Pinkall, U., Sanan, P., and Schröder, P. 2010. A simple geometric model for elastic deformations. In Proc. of ACM SIGGRAPH ’10, 38:1–38:6. Google Scholar
    11. Gain, J., and Bechmann, D. 2008. A survey of spatial deformation from a user-centered perspective. ACM Trans. Graph. 27, 107:1–107:21. Google ScholarDigital Library
    12. Grinspun, E., Hirani, A. N., Desbrun, M., and Schröder, P. 2003. Discrete shells. In Proc. of Symp. on Computer Animation (SCA ’03), 62–67. Google ScholarDigital Library
    13. Irving, G., Teran, J., and Fedkiw, R. 2004. Invertible finite elements for robust simulation of large deformation. In Proc. of Symp. on Computer Animation (SCA ’04), 131–140. Google Scholar
    14. Kilian, M., Mitra, N. J., and Pottmann, H. 2007. Geometric modeling in shape space. In Proc. of ACM SIGGRAPH ’07, 64:1–64:8. Google Scholar
    15. Kircher, S., and Garland, M. 2006. Editing arbitrarily deforming surface animations. In Proc. of ACM SIGGRAPH ’06, 1098–1107. Google Scholar
    16. Kondo, R., Kanai, T., and Anjyo, K.-i. 2005. Directable animation of elastic objects. In Proc. of Symp. on Computer Animation (SCA ’05), 127–134. Google Scholar
    17. Li, H., Weise, T., and Pauly, M. 2010. Example-based facial rigging. In Proc. of ACM SIGGRAPH ’10, 32:1–32:6. Google Scholar
    18. Lipman, Y., Sorkine, O., Levin, D., and Cohen-Or, D. 2005. Linear rotation-invariant coordinates for meshes. In Proc. of ACM SIGGRAPH ’05, 479–487. Google Scholar
    19. McNamara, A., Treuille, A., Popović, Z., and Stam, J. 2004. Fluid control using the adjoint method. In Proc. of ACM SIGGRAPH ’04, 449–456. Google Scholar
    20. Mezger, J., Thomaszewski, B., Pabst, S., and Strasser, W. 2008. Interactive physically-based shape editing. In Proc. of ACM Symp. on Solid and Physical Modeling, 79–89. Google Scholar
    21. Nocedal, J., and Wright, S. J. 2000. Numerical Optimization. Springer.Google Scholar
    22. O’Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In Proc. of ACM SIGGRAPH ’99, 137–146. Google Scholar
    23. Picinbono, G., Delingette, H., and Ayache, N. 2003. Non-linear anisotropic elasticity for real-time surgery simulation. Graph. Models 65, 305–321. Google ScholarDigital Library
    24. Popović, J., Seitz, S. M., Erdmann, M., Popović, Z., and Witkin, A. 2000. Interactive manipulation of rigid body simulations. In Proc. of ACM SIGGRAPH ’00, 209–217. Google ScholarDigital Library
    25. Schenk, O., and Gärtner, K. 2002. Solving unsymmetric sparse systems of linear equations with pardiso. In Proc. ICCS ’02, 355–363. Google ScholarDigital Library
    26. Sheffer, A., and Kraevoy, V. 2004. Pyramid Coordinates for Morphing and Deformation. In Proc. 3D Data Processing, Visualization, and Transmission, 68–75. Google Scholar
    27. Sorkine, O., Lipman, Y., Cohen-Or, D., Alexa, M., Rossl, C., and Seidel, H.-P. 2004. Laplacian surface editing. In Symp. Geometry processing (SGP ’04), 179–188. Google Scholar
    28. Sumner, R. W., and Popović, J. 2004. Deformation transfer for triangle meshes. In Proc. of ACM SIGGRAPH ’04, 399–405. Google Scholar
    29. Sumner, R. W., Zwicker, M., Gotsman, C., and Popović, J. 2005. Mesh-based inverse kinematics. In Proc. of ACM SIGGRAPH ’05, 488–495. Google Scholar
    30. Terzopoulos, D., and Fleischer, K. 1988. Modeling inelastic deformation: Viscoelasticity, plasticity, fracture. In Proc. of ACM SIGGRAPH ’88, 269–278. Google Scholar
    31. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Proc. of ACM SIGGRAPH ’87, 205–214. Google Scholar
    32. Thoutireddy, P., and Ortiz, M. 2004. A variational r-adaption and shape-optimization method for finite-deformation elasticity. Int. J. Numer. Meth. Engng. 61, 1–21.Google ScholarCross Ref
    33. Thürey, N., Keiser, R., Pauly, M., and Rüde, U. 2006. Detail-preserving fluid control. In Proc. of Symp. on Computer Animation (SCA ’06), 7–12. Google ScholarDigital Library
    34. Twigg, C. D., and James, D. L. 2007. Many-worlds browsing for control of multibody dynamics. In Proc. of ACM SIGGRAPH ’07, 14:1–14:8. Google Scholar
    35. Wei, L.-Y., Lefebvre, S., Kwatra, V., and Turk, G. 2009. State of the art in example-based texture synthesis. In Proc. of Eurographics ’09, State of the Art Report.Google Scholar
    36. Winkler, T., Drieseberg, J., Alexa, M., and Hormann, K. 2010. Multi-scale geometry interpolation. In Proc. of Eurographics ’10, 309–318.Google Scholar
    37. Wirth, B., Bar, L., Rumpf, M., and Sapiro, G. 2010. A continuum mechanical approach to geodesics in shape space. Int. J. of Computer Vision, 1–26. Google Scholar
    38. Witkin, A., and Kass, M. 1988. Spacetime constraints. In Proc. of ACM SIGGRAPH ’88, 159–168. Google Scholar
    39. Wojtan, C., Mucha, P. J., and Turk, G. 2006. Keyframe control of complex particle systems using the adjoint method. In Proc. of Symp. on Computer Animation (SCA ’06), 15–23. Google ScholarDigital Library
    40. Wojtan, C., Thürey, N., Gross, M., and Turk, G. 2009. Deforming meshes that split and merge. In Proc. of ACM SIGGRAPH ’09, 76:1–76:10. Google Scholar

ACM Digital Library Publication: