“Example-based dynamic skinning in real time”

  • ©Xiaohan Shi, Kun Zhou, Yiying Tong, Mathieu Desbrun, Hujun Bao, and Baining Guo




    Example-based dynamic skinning in real time



    In this paper we present an approach to enrich skeleton-driven animations with physically-based secondary deformation in real time. To achieve this goal, we propose a novel, surface-based deformable model that can interactively emulate the dynamics of both low-and high-frequency volumetric effects. Given a surface mesh and a few sample sequences of its physical behavior, a set of motion parameters of the material are learned during an off-line preprocessing step. The deformable model is then applicable to any given skeleton-driven animation of the surface mesh. Additionally, our dynamic skinning technique can be entirely implemented on GPUs and executed with great efficiency. Thus, with minimal changes to the conventional graphics pipeline, our approach can drastically enhance the visual experience of skeleton-driven animations by adding secondary deformation in real time.


    1. Alliez, P., Cohen-Steiner, D., Yvinec, M., and Desbrun, M. 2005. Variational tetrahedral meshing. ACM Trans. Graph. 24, 3, 617–625. Google ScholarDigital Library
    2. Avriel, M. 2003. Nonlinear programming: Analysis and Methods. Dover Publications.Google Scholar
    3. Bergou, M., Mathur, S., Wardetzky, M., and Grinspun, E. 2007. Tracks: toward directable thin shells. ACM Trans. Graph. 26, 3, 50. Google ScholarDigital Library
    4. Bhat, K. S., Twigg, C. D., Hodgins, J. K., Khosla, P. K., Popović, Z., and Seitz, S. M. 2003. Estimating cloth simulation parameters from video. In Proceedings of SCA’03, 37–51. Google ScholarDigital Library
    5. Bianchi, G., Solenthaler, B., Székely, G., and Harders, M. 2004. Simultaneous topology and stiffness identification for mass-spring models based on fem reference deformations. In MICCAI (2), 293–301.Google Scholar
    6. Bourguignon, D., and Cani, M.-P. 2000. Controlling anisotropy in mass-spring systems. In Proceedings of Computer Animation and Simulation’00, 113–123.Google Scholar
    7. Capell, S., Green, S., Curless, B., Duchamp, T., and Popović, Z. 2002. Interactive skeleton-driven dynamic deformations. ACM Trans. Graph. 21, 3, 586–593. Google ScholarDigital Library
    8. Dempster, A. P., Laird, N. M., and Rubin, D. B. 1977. Maximum likelihood from incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B (Methodological) 39, 1, 1–38.Google ScholarCross Ref
    9. Hadap, S., and Kokkevis, V. 2005. Introduction to articulated rigid body dynamics. In ACM SIGGRAPH 2005 Courses, 1. Google ScholarDigital Library
    10. Haralick, R., Joo, H., Lee, C., Zhuang, X., Vaidya, V., and Kim, M. 1989. Pose estimation from corresponding point data. IEEE Transactions on Systems, Man and Cybernetics 19, 6, 1426–1446.Google ScholarCross Ref
    11. Hauser, K. K., Shen, C., and O’Brien, J. F. 2003. Interactive deformation using modal analysis with constraints. In Graphics Interface, 247–256.Google Scholar
    12. James, D. L., and Pai, D. K. 1999. Artdefo: accurate real time deformable objects. In Proceedings of SIGGRAPH’99, 65–72. Google ScholarDigital Library
    13. James, D. L., and Pai, D. K. 2002. Dyrt: dynamic response textures for real time deformation simulation with graphics hardware. ACM Trans. Graph. 21, 3, 582–585. Google ScholarDigital Library
    14. James, D. L., and Pai, D. K. 2002. Real time simulation of multizone elastokinematic models. Proceedings of ICRA’02 1, 927–932.Google Scholar
    15. Larboulette, C., Cani, M.-P., and Arnaldi, B. 2005. Dynamic skinning: adding real-time dynamic effects to an existing character animation. In Proceedings of SCCG’05, 87–93. Google ScholarDigital Library
    16. Lee, M. 2006. Seven ways to skin a mesh: Character skinning revisited for modern gpus. In Proceedings of GameFest, Microsoft Game Technology Conference.Google Scholar
    17. Lewis, J. P., Cordner, M., and Fong, N. 2000. Pose space deformation: a unified approach to shape interpolation and skeleton-driven deformation. In Proceedings of SIGGRAPH’00, 165–172. Google ScholarDigital Library
    18. Lindholm, E., Kligard, M. J., and Moreton, H. 2001. A user-programmable vertex engine. In Proceedings of SIGGRAPH’01, 149–158. Google ScholarDigital Library
    19. Magnenat-Thalmann, N., Laperrière, R., and Thalmann, D. 1988. Joint-dependent local deformations for hand animation and object grasping. In Proceedings of GI’88, 26–33. Google ScholarDigital Library
    20. McNamara, A., Treuille, A., Popović, Z., and Stam, J. 2004. Fluid control using the adjoint method. ACM Trans. Graph. 23, 3, 449–456. Google ScholarDigital Library
    21. Mohr, A., and Gleicher, M. 2003. Building efficient, accurate character skins from examples. ACM Trans. Graph. 22, 3, 562–568. Google ScholarDigital Library
    22. Molino, N., Bridson, R., Teran, J., and Fedkiw, R. 2003. A crystalline, red green strategy for meshing highly deformable objects with tetrahedra. In IMR, 103–114.Google Scholar
    23. Müller, M., and Gross, M. 2004. Interactive virtual materials. In Proceedings of GI’04, 239–246. Google ScholarDigital Library
    24. Müller, M., Heidelberger, B., Teschner, M., and Gross, M. 2005. Meshless deformations based on shape matching. ACM Trans. Graph. 24, 3, 471–478. Google ScholarDigital Library
    25. NVIDIA, 2007. CUDA homepage. http://developer.nvidia.com/object/cuda.html.Google Scholar
    26. O’Brien, J. F., Zordan, V. B., and Hodgins, J. K. 2000. Combining active and passive simulations for secondary motion. IEEE Comput. Graph. Appl. 20, 4, 86–96. Google ScholarDigital Library
    27. Park, S. I., and Hodgins, J. K. 2006. Capturing and animating skin deformation in human motion. ACM Trans. Graph. 25, 3, 881–889. Google ScholarDigital Library
    28. Pentland, A., and Williams, J. 1989. Good vibrations: model dynamics for graphics and animation. In Proceedings of SIGGRAPH’89, 215–222. Google ScholarDigital Library
    29. Rivers, A. R., and James, D. L. 2007. Fastlsm: fast lattice shape matching for robust real-time deformation. ACM Trans. Graph. 26, 3, 82. Google ScholarDigital Library
    30. Sand, P., Mcmillan, L., and Popović, J. 2003. Continuous capture of skin deformation. ACMTrans. Graph. 22, 3, 578–586. Google ScholarDigital Library
    31. Shi, X., Zhou, K., Tong, Y., Desbrun, M., Bao, H., and Guo, B. 2007. Mesh puppetry: cascading optimization of mesh deformation with inverse kinematics. ACM Trans. Graph. 26, 3, 81. Google ScholarDigital Library
    32. Sumner, R. W., Zwicker, M., Gotsman, C., and Popović, J. 2005. Mesh-based inverse kinematics. ACM Trans. Graph. 24, 3, 488–495. Google ScholarDigital Library
    33. Teschner, M., Heidelberger, B., Muller, M., and Gross, M. 2004. A versatile and robust model for geometrically complex deformable solids. In Proceedings of CGI’04, 312–319. Google ScholarCross Ref
    34. Von Funck, W., Theisel, H., and Seidel, H.-P. 2007. Elastic secondary deformations by vector field integration. In Proceedings of SGP’07, 99–108. Google ScholarDigital Library
    35. Wang, R. Y., Pulli, K., and Popović, J. 2007. Real-time enveloping with rotational regression. ACM Trans. Graph. 26, 3, 73. Google ScholarDigital Library
    36. Wilhelms, J. 1995. Modeling animals with bones, muscles, and skin. Technical report. University of California at Santa Cruz. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: