“Energy-preserving integrators for fluid animation” by Mullen, Crane, Pavlov, Tong and Desbrun

  • ©Patrick Mullen, Keenan Crane, Dmitry Pavlov, Yiying Tong, and Mathieu Desbrun




    Energy-preserving integrators for fluid animation



    Numerical viscosity has long been a problem in fluid animation. Existing methods suffer from intrinsic artificial dissipation and often apply complicated computational mechanisms to combat such effects. Consequently, dissipative behavior cannot be controlled or modeled explicitly in a manner independent of time step size, complicating the use of coarse previews and adaptive-time stepping methods. This paper proposes simple, unconditionally stable, fully Eulerian integration schemes with no numerical viscosity that are capable of maintaining the liveliness of fluid motion without recourse to corrective devices. Pressure and fluxes are solved efficiently and simultaneously in a time-reversible manner on simplicial grids, and the energy is preserved exactly over long time scales in the case of inviscid fluids. These integrators can be viewed as an extension of the classical energy-preserving Harlow-Welch / Crank-Nicolson scheme to simplicial grids.


    1. Benzi, M., Golub, G. H., and Liesen, J. 2005. Numerical solution of saddle point problems. Acta Numerica 14, 1–137.Google ScholarCross Ref
    2. Bergou, M., Mathur, S., Wardetzky, M., and Grinspun, E. 2007. TRACKS: toward directable thin shells. ACM Trans. on Graphics 26, 3, art. 50. Google ScholarDigital Library
    3. Brackbill, J., and Ruppel, H. 1986. FLIP: a method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. Journal of Computational Physics 65, 314–343. Google ScholarDigital Library
    4. Chentanez, N., Feldman, B. E., Labelle, F., O’Brien, J. F., and Shewchuk, J. 2007. Liquid simulation on latticebased tetrahedral meshes. In Symposium on Computer Animation, 219–228. Google ScholarDigital Library
    5. Chorin, A., and Marsden, J. 1979. A Mathematical Introduction to Fluid Mechanics, 3rd edition ed. Springer-Verlag.Google Scholar
    6. Duponcheel, M., Orlandi, P., and Winckelmans, G. 2008. Time-reversibility of the Euler equations as a benchmark for energy conserving schemes. Journal of Computational Physics 227, 19, 8736–8752. Google ScholarDigital Library
    7. Elcott, S., Tong, Y., Kanso, E., Schröder, P., and Desbrun, M. 2007. Stable, circulation-preserving, simplicial fluids. ACM Transactions on Graphics 26, 1 (Jan.), art. 4. Google ScholarDigital Library
    8. Fedkiw, R., Stam, J., and Jensen, H. W. 2001. Visual simulation of smoke. In Proceedings of ACM SIGGRAPH, 15–22. Google ScholarDigital Library
    9. Feldman, B. E., O’Brien, J. F., and Arikan, O. 2003. Animating suspended particle explosions. ACM Transactions on Graphics 22, 3 (July), 708–715. Google ScholarDigital Library
    10. Feldman, B. E., O’Brien, J. F., and Klingner, B. M. 2005. Animating gases with hybrid meshes. ACM Transactions on Graphics 24, 3, 904–909. Google ScholarDigital Library
    11. Foster, N., and Metaxas, D. 1997. Modeling the motion of a hot, turbulent gas. In Proceedings of SIGGRAPH, 181–188. Google ScholarDigital Library
    12. Gresho, P. M., and Sani, R. L. 2000. Incompressible Flow and the Finite Element Method. J. Wiley & Sons.Google Scholar
    13. Harlow, F. H., and Welch, J. E. 1965. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids 8, 12 (Dec.), 2182–2189.Google ScholarCross Ref
    14. Kim, B., Liu, Y., Llamas, I., and Rossignac, J. 2007. Advections with significantly reduced dissipation and diffusion. IEEE Trans. on Visualiz. and Comp. Graphics 13(1), 135–144. Google ScholarDigital Library
    15. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. ACM Transactions on Graphics 23, 3 (Aug.), 457–462. Google ScholarDigital Library
    16. Mahesh, K., Constantinescu, G., and Moin, P. 2004. A numerical method for large-eddy simulation in complex geometries. J. Comput. Phys. 197, 1, 215–240. Google ScholarDigital Library
    17. Molemaker, J., Cohen, J. M., Patel, S., and Yong Noh, J. 2008. Low viscosity flow simulations for animation. In Symposium on Computer Animation, 9–18. Google ScholarDigital Library
    18. Pavlov, D. 2009. Structure-preserving Discretizations of Incompressible Fluids. PhD dissertation in Mathematics, California Institute of Technology.Google Scholar
    19. Perot, B. 2000. Conservation properties of unstructured staggered mesh schemes. J. Comput. Phys. 159, 1, 58–89. Google ScholarDigital Library
    20. Schechter, H., and Bridson, R. 2008. Evolving sub-grid turbulence for smoke animation. In Symposium on Computer Animation, 1–8. Google ScholarDigital Library
    21. Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. ACM Transactions on Graphics 24, 3 (Aug.), 910–914. Google ScholarDigital Library
    22. Selle, A., Fedkiw, R., Kim, B., Liu, Y., and Rossignac, J. 2008. An unconditionally stable MacCormack method. J. Sci. Comp. 35, 350–371. Google ScholarDigital Library
    23. Shi, L., and Yu, Y. 2002. Visual smoke simulation with adaptive octree refinement. Computer Graphics and Imaging.Google Scholar
    24. Simo, J., and Armero, F. 1994. Unconditional stability and long-term behavior of transient algorithms for the incompressible Navier-Stokes and Euler equations. Computer Methods in Applied Mechanics and Engineering 111, 1–2, 111–154.Google ScholarCross Ref
    25. Stam, J. 1999. Stable fluids. In Proceedings of ACM SIGGRAPH, 121–128. Google ScholarDigital Library
    26. Steinhoff, J., and Underhill, D. 1994. Modification of the euler equations for Vorticity Confinement. Physics of Fluids 6, 8 (Aug.), 2738–2744.Google ScholarCross Ref
    27. Stern, A., and Desbrun, M. 2006. Discrete geometric mechanics for variational time integrators. In ACM SIGGRAPH Course Notes, 75–80. Google ScholarDigital Library
    28. Zhang, X., Schmidt, D., and Perot, B. 2002. Accuracy and conservation properties of a 3d unstructured staggered mesh scheme for fluid dynamics. J. Comput. Phys. 175, 2, 764–791. Google ScholarDigital Library
    29. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. In Proceedings of ACM SIGGRAPH, 965–972. Google ScholarDigital Library

ACM Digital Library Publication: