“Eigenmode compression for modal sound models” by Langlois, An, Jin and James

  • ©Timothy R. Langlois, Steven S. An, Kelvin K. Jin, and Doug L. James

Conference:


Type:


Session Title:

    Sound & Light

Title:

    Eigenmode compression for modal sound models

Moderator(s):



Presenter(s)/Author(s):



Abstract:


    We propose and evaluate a method for significantly compressing modal sound models, thereby making them far more practical for audiovisual applications. The dense eigenmode matrix, needed to compute the sound model’s response to contact forces, can consume tens to thousands of megabytes depending on mesh resolution and mode count. Our eigenmode compression pipeline is based on non-linear optimization of Moving Least Squares (MLS) approximations. Enhanced compression is achieved by exploiting symmetry both within and between eigenmodes, and by adaptively assigning per-mode error levels based on human perception of the far-field pressure amplitudes. Our method provides smooth eigenmode approximations, and efficient random access. We demonstrate that, in many cases, hundredfold compression ratios can be achieved without audible degradation of the rendered sound.

References:


    1. Adrien, J.-M. 1991. Representations of musical signals. MIT Press, Cambridge, MA, USA, ch. The Missing Link: Modal Synthesis, 269–298. Google ScholarDigital Library
    2. Agarwal, S., Mierle, K., and Others. Ceres solver. https://code.google.com/p/ceres-solver/.Google Scholar
    3. Alexa, M., and Müller, W. 2000. Representing animations by principal components. In Computer Graphics Forum, vol. 19, Wiley Online Library, 411–418.Google Scholar
    4. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., and Silva, C. T. 2001. Point set surfaces. In Proceedings of the Conference on Visualization ’01, IEEE Computer Society, Washington, DC, USA, VIS ’01, 21–28. Google ScholarDigital Library
    5. Ashihara, K. 2007. Hearing thresholds for pure tones above 16khz. The Journal of the Acoustical Society of America 122, 3.Google ScholarCross Ref
    6. Bathe, K.-J. 1996. Finite Element Procedures, second ed. Prentice Hall.Google Scholar
    7. Bonneel, N., Drettakis, G., Tsingos, N., Viaud-Delmon, I., and James, D. 2008. Fast Modal Sounds with Scalable Frequency-Domain Synthesis. ACM Transactions on Graphics 27, 3 (Aug.), 24:1–24:9. Google ScholarDigital Library
    8. Chadwick, J. N., An, S. S., and James, D. L. 2009. Harmonic shells: A practical nonlinear sound model for near-rigid thin shells. ACM Trans. Graph. 28, 5 (Dec.), 119:1–119:10. Google ScholarDigital Library
    9. Chadwick, J. N., Zheng, C., and James, D. L. 2012. Precomputed acceleration noise for improved rigid-body sound. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2012) 31, 4 (Aug.). Google ScholarDigital Library
    10. Cook, P. R. 1995. Integration of physical modeling for synthesis and animation. In Proceedings of the International Computer Music Conference, 525–528.Google Scholar
    11. Cook, P. 2002. Real Sound Synthesis for Interactive Applications. A. K. Peters. Google ScholarDigital Library
    12. Fastl, H., and Zwicker, E. 2006. Psychoacoustics: Facts and models, vol. 22. Springer. Google ScholarDigital Library
    13. Fleishman, S., Cohen-Or, D., and Silva, C. T. 2005. Robust moving least-squares fitting with sharp features. ACM Trans. Graph. 24, 3 (July), 544–552. Google ScholarDigital Library
    14. Grelaud, D., Bonneel, N., Wimmer, M., Asselot, M., and Drettakis, G. 2009. Efficient and practical audio-visual rendering for games using crossmodal perception. In I3D ’09: Proceedings of the 2009 symposium on Interactive 3D graphics and games, ACM, New York, NY, USA, 177–182. Google ScholarDigital Library
    15. Guendelman, E., Bridson, R., and Fedkiw, R. 2003. Non-convex rigid bodies with stacking. ACM Trans. Graph. 22, 3 (July), 871–878. Google ScholarDigital Library
    16. Guskov, I., and Khodakovsky, A. 2004. Wavelet compression of parametrically coherent mesh sequences. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SCA ’04, 183–192. Google ScholarDigital Library
    17. Howe, M. S. 1998. Acoustics of fluid-structure interactions. Cambridge University Press.Google Scholar
    18. James, D. L., and Pai, D. K. 2003. Multiresolution green’s function methods for interactive simulation of large-scale elastostatic objects. ACM Trans. Graph. 22, 1 (Jan.), 47–82. Google ScholarDigital Library
    19. James, D. L., Barbič, J., and Pai, D. K. 2006. Precomputed Acoustic Transfer: Output-sensitive, accurate sound generation for geometrically complex vibration sources. ACM Transactions on Graphics 25, 3 (July), 987–995. Google ScholarDigital Library
    20. Jin, J., Garland, M., and Ramos, E. A. 2009. Mls-based scalar fields over triangle meshes and their application in mesh processing. In Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, ACM, New York, NY, USA, I3D ’09, 145–153. Google ScholarDigital Library
    21. Kolarov, K., and Lynch, W. 1997. Wavelet compression for 3d and higher-dimensional objects. In Proc. of SPIE Conference on Applications of Digital Image Processing XX, Volume 3164.Google Scholar
    22. Lipman, Y., Chen, X., Daubechies, I., and Funkhouser, T. 2010. Symmetry factored embedding and distance. ACM Trans. Graph. 29, 4 (July), 103:1–103:12. Google ScholarDigital Library
    23. Liu, Y. J. 2009. Fast Multipole Boundary Element Method: Theory and Applications in Engineering. Cambridge University Press, Cambridge.Google Scholar
    24. Martinet, A., Soler, C., Holzschuch, N., and Sillion, F. X. 2006. Accurate detection of symmetries in 3d shapes. ACM Trans. Graph. 25, 2 (Apr.), 439–464. Google ScholarDigital Library
    25. Mitra, N. J., Guibas, L. J., and Pauly, M. 2006. Partial and approximate symmetry detection for 3d geometry. ACM Trans. Graph. 25, 3 (July), 560–568. Google ScholarDigital Library
    26. Mitra, N. J., Pauly, M., Wand, M., and Ceylan, D. 2012. Symmetry in 3d geometry: Extraction and applications. In EUROGRAPHICS State-of-the-art Report.Google Scholar
    27. O’Brien, J. F., Shen, C., and Gatchalian, C. M. 2002. Synthesizing sounds from rigid-body simulations. In ACM SIGGRAPH Symposium on Computer Animation, 175–181. Google ScholarDigital Library
    28. Pai, D. K., Doel, K. v. d., James, D. L., Lang, J., Lloyd, J. E., Richmond, J. L., and Yau, S. H. 2001. Scanning physical interaction behavior of 3d objects. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, NY, USA, SIGGRAPH ’01, 87–96. Google ScholarDigital Library
    29. Pauly, M., Gross, M., and Kobbelt, L. P. 2002. Efficient simplification of point-sampled surfaces. In Proceedings of the conference on Visualization ’02, IEEE Computer Society, Washington, DC, USA, VIS ’02, 163–170. Google ScholarDigital Library
    30. Raghuvanshi, N., and Lin, M. C. 2006. Interactive sound synthesis for large scale environments. In Proceedings of the 2006 Symposium on Interactive 3D Graphics and Games, ACM, New York, NY, USA, I3D ’06, 101–108. Google ScholarDigital Library
    31. Richmond, J. L. 2000. Automatic measurement and modeling of contact sounds. Master’s thesis, University of British Columbia.Google Scholar
    32. Schaefer, S., McPhail, T., and Warren, J. 2006. Image deformation using moving least squares. ACM Trans. Graph. 25, 3 (July), 533–540. Google ScholarDigital Library
    33. Schröder, P., and Sweldens, W. 1995. Spherical wavelets: Efficiently representing functions on the sphere. In Proceedings of the 22Nd Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, NY, USA, SIGGRAPH ’95, 161–172. Google ScholarDigital Library
    34. Seo, J., Irving, G., Lewis, J. P., and Noh, J. 2011. Compression and direct manipulation of complex blendshape models. ACM Trans. Graph. 30, 6 (Dec.), 164:1–164:10. Google ScholarDigital Library
    35. Shabana, A. A. 1990. Theory of Vibration, Volume II: Discrete and Continuous Systems. Springer–Verlag, New York, NY.Google Scholar
    36. Shen, C., O’Brien, J. F., and Shewchuk, J. R. 2004. Interpolating and approximating implicit surfaces from polygon soup. ACM Trans. Graph. 23, 3 (Aug.), 896–904. Google ScholarDigital Library
    37. Simari, P., Kalogerakis, E., and Singh, K. 2006. Folding meshes: Hierarchical mesh segmentation based on planar symmetry. In Proceedings of the Fourth Eurographics Symposium on Geometry Processing, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, SGP ’06, 111–119. Google ScholarDigital Library
    38. Sorkine, O., and Cohen-Or, D. 2004. Least-squares meshes. In Proceedings of Shape Modeling International, IEEE Computer Society Press, 191–199. Google ScholarDigital Library
    39. Tsingos, N., Gallo, E., and Drettakis, G. 2004. Perceptual audio rendering of complex virtual environments. ACM Trans. Graph. 23, 3 (Aug.), 249–258. Google ScholarDigital Library
    40. van den Doel, K., and Pai, D. K. 1996. Synthesis of shape dependent sounds with physical modeling. In Intl Conf. on Auditory Display.Google Scholar
    41. van den Doel, K., Kry, P. G., and Pai, D. K. 2001. FoleyAutomatic: Physically Based Sound Effects for Interactive Simulation and Animation. In Proceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series, 537–544. Google ScholarDigital Library
    42. van den Doel, K., Knott, D., and Pai, D. K. 2004. Interactive simulation of complex audiovisual scenes. Presence: Teleoper. Virtual Environ. 13, 1, 99–111. Google ScholarDigital Library
    43. Zheng, C., and James, D. L. 2010. Rigid-body fracture sound with precomputed soundbanks. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2010) 29, 3 (July). Google ScholarDigital Library
    44. Zheng, C., and James, D. L. 2011. Toward high-quality modal contact sound. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2011) 30, 4 (Aug.). Google ScholarDigital Library


ACM Digital Library Publication: