“Efficient simulation of large bodies of water by coupling two and three dimensional techniques” by Irving, Guendelman, Losasso and Fedkiw

  • ©Geoffrey Irving, Eran Guendelman, Frank Losasso, and Ronald Fedkiw




    Efficient simulation of large bodies of water by coupling two and three dimensional techniques



    We present a new method for the efficient simulation of large bodies of water, especially effective when three-dimensional surface effects are important. Similar to a traditional two-dimensional height field approach, most of the water volume is represented by tall cells which are assumed to have linear pressure profiles. In order to avoid the limitations typically associated with a height field approach, we simulate the entire top surface of the water volume with a state of the art, fully three-dimensional Navier-Stokes free surface solver. Our philosophy is to use the best available method near the interface (in the three-dimensional region) and to coarsen the mesh away from the interface for efficiency. We coarsen with tall, thin cells (as opposed to octrees or AMR), because they maintain good resolution horizontally allowing for accurate representation of bottom topography.


    1. Adalsteinsson, D., and Sethian, J. 1995. A fast level set method for propagating interfaces. J. Comput. Phys. 118, 269–277. Google ScholarDigital Library
    2. Baraff, D., Witkin, A., Kass, M., and Anderson, J. 2003. Physically based modeling (a little fluid dynamics for graphics). In SIGGRAPH Course Notes, ACM.Google Scholar
    3. Baxter, W., and Lin, M. 2004. Haptic interaction with fluid media. In Proc. of Graph. Interface, 81–88. Google ScholarDigital Library
    4. Baxter, W., Liu, Y., and Lin, M. 2004. A viscous paint model for interactive applications. In Proc. of Comput. Anim. and Social Agents, vol. 15, 433–441. Google ScholarDigital Library
    5. Baxter, W., Wendt, J., and Lin, M. 2004. Impasto: A realistic, interactive model for paint. In Proc. of Non-Photorealistic Anim. and Rendering, 45–56. Google ScholarDigital Library
    6. Breen, D., Fedkiw, R., Museth, K., Osher, S., Sapiro, G., and Whitaker, R. 2004. Level sets and PDE methods for computer graphics. In SIGGRAPH Course Notes, ACM. Google ScholarDigital Library
    7. Bridson, R. 2003. Computational Aspects of Dynamic Surfaces. PhD thesis, Stanford University. Google ScholarDigital Library
    8. Carlson, M., Mucha, P. J., and Turk, G. 2004. Rigid fluid: Animating the interplay between rigid bodies and fluid. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 377–384. Google ScholarDigital Library
    9. Chen, J., and Lobo, N. 1994. Toward interactive-rate simulation of fluids with moving obstacles using the navier-stokes equations. Comput. Graph. and Image Processing 57, 107–116. Google ScholarDigital Library
    10. Curless, B., and Levoy, M. 1996. A volumetric method for building complex models from range images. Comput. Graph. (SIGGRAPH Proc.), 303–312. Google ScholarDigital Library
    11. Enright, D., Marschner, S., and Fedkiw, R. 2002. Animation and rendering of complex water surfaces. ACM Trans. Graph. (SIGGRAPH Proc.) 21, 3, 736–744. Google ScholarDigital Library
    12. Fedkiw, R., Stam, J., and Jensen, H. 2001. Visual simulation of smoke. In Proc. of ACM SIGGRAPH 2001, 15–22. Google ScholarDigital Library
    13. Foster, N., and Fedkiw, R. 2001. Practical animation of liquids. In Proc. of ACM SIGGRAPH 2001, 23–30. Google ScholarDigital Library
    14. Foster, N., and Metaxas, D. 1996. Realistic animation of liquids. Graph. Models and Image Processing 58, 471–483. Google ScholarDigital Library
    15. Foster, N., and Metaxas, D. 1997. Controlling fluid animation. In Comput. Graph. Int., 178–188. Google ScholarDigital Library
    16. Foster, N., and Metaxas, D. 1997. Modeling the motion of a hot, turbulent gas. In Proc. of SIGGRAPH 97, 181–188. Google ScholarDigital Library
    17. Fournier, A., and Reeves, W. T. 1986. A simple model of ocean waves. In Comput. Graph. (Proc. of SIGGRAPH 86), vol. 20, 75–84. Google ScholarDigital Library
    18. Goktekin, T. G., Bargteil, A. W., and O’Brien, J. F. 2004. A method for animating viscoelastic fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 463–467. Google ScholarDigital Library
    19. Guendelman, E., Selle, A., Losasso, F., and Fedkiw, R. 2005. Coupling water and smoke to thin deformable and rigid shells. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 973–981. Google ScholarDigital Library
    20. Hinsinger, D., Neyret, F., and Cani, M.-P. 2002. Interactive animation of ocean waves. In ACM SIGGRAPH Symp. on Comput. Anim., 161–166. Google ScholarDigital Library
    21. Hong, J.-M., and Kim, C.-H. 2005. Discontinuous fluids. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 915–919. Google ScholarDigital Library
    22. Houston, B., Wiebe, M., and Batty, C. 2004. RLE sparse level sets. In SIGGRAPH 2004 Sketches & Applications, ACM Press. Google ScholarDigital Library
    23. Houston, B., Nielsen, M., Batty, C., Nilsson, O., and Museth, K. 2005. Gigantic deformable surfaces. In SIGGRAPH 2005 Sketches & Applications, ACM Press. Google ScholarDigital Library
    24. Houston, B., Nielsen, M., Batty, C., Nilsson, O., and Museth, K. 2006. Hierarchical RLE level set: A compact and versatile deformable surface representation. ACM Trans. Graph. 25, 1, 1–24. Google ScholarDigital Library
    25. Iversen, J., and Sakaguchi, R. 2004. Growing up with fluid simulation on “The Day After Tomorrow”. In SIGGRAPH 2004 Sketches & Applications, ACM Press. Google ScholarDigital Library
    26. Kass, M., and Miller, G. 1990. Rapid, stable fluid dynamics for computer graphics. In Comput. Graph. (Proc. of SIGGRAPH 90), vol. 24, 49–57. Google ScholarDigital Library
    27. Losasso, F., Gibou, F., and Fedkiw, R. 2004. Simulating water and smoke with an octree data structure. ACM Trans. Graph. (SIGGRAPH Proc.) 23, 457–462. Google ScholarDigital Library
    28. Losasso, F., Fedkiw, R., and Osher, S. 2006. Spatially Adaptive Techniques for Level Set Methods and Incompressible Flow. Computers and Fluids (in press).Google Scholar
    29. Mastin, G., Watterberg, P., and Mareda, J. 1987. Fourier synthesis of ocean scenes. IEEE Comput. Graph. Appl. 7, 3, 16–23. Google ScholarDigital Library
    30. McNamara, A., Treuille, A., Popović, Z., and Stam, J. 2004. Fluid control using the adjoint method. ACM Trans. Graph. (SIGGRAPH Proc.), 449–456. Google ScholarDigital Library
    31. Mihalef, V., Metaxas, D., and Sussman, M. 2004. Animation and control of breaking waves. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 315–324. Google ScholarDigital Library
    32. Neyret, F., and Praizelin, N. 2001. Phenomenological simulation of brooks. In Comput. Anim. and Sim. ’01, Proc. Eurographics Wrkshp., 53–64. Google ScholarDigital Library
    33. Nielsen, M., and Museth, K. 2005. Dynamic tubular grid: An efficient data structure and algorithms for high resolution level sets. Accepted to SIAM J. Scientific Comput. Google ScholarDigital Library
    34. O’Brien, J. F., and Hodgins, J. K. 1995. Dynamic simulation of splashing fluids. In Comput. Anim. ’95, 198–205. Google ScholarDigital Library
    35. Peachey, D. R. 1986. Modeling waves and surf. In Comput. Graph. (Proc. of SIGGRAPH 86), vol. 20, 65–74. Google ScholarDigital Library
    36. Peng, D., Merriman, B., Osher, S., Zhao, H., and Kang, M. 1999. A PDE-based fast local level set method. J. Comput. Phys. 155, 410–438. Google ScholarDigital Library
    37. Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 910–914. Google ScholarDigital Library
    38. Shi, L., and Yu, Y. 2005. Taming liquids for rapidly changing targets. In Proc. of the ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 229–236. Google ScholarDigital Library
    39. Stam, J. 1999. Stable fluids. In Proc. of SIGGRAPH 99, 121–128. Google ScholarDigital Library
    40. Takahashi, T., Fujii, H., Kunimatsu, A., Hiwada, K., Saito, T., Tanaka, K., and Ueki, H. 2003. Realistic animation of fluid with splash and foam. Comp. Graph. Forum (Eurographics Proc.) 22, 3, 391–400.Google ScholarCross Ref
    41. Tessendorf, J. 2002. Simulating Ocean Water. In SIGGRAPH 2002 Course Notes #9 (Simulating Nature: Realistic and Interactive Techniques), ACM Press.Google Scholar
    42. Thon, S., and Ghazanfarpour, D. 2001. A semi-physical model of running waters. Comput. Graph. Forum (Proc. Eurographics) 19, 53–59.Google Scholar
    43. Thon, S., Dischler, J.-M., and Ghazanfarpour, D. 2000. Ocean waves synthesis using a spectrum-based turbulence function. In Comput. Graph. Int., 65–74. Google ScholarDigital Library
    44. Ts’o, P. Y., and Barsky, B. A. 1987. Modeling and rendering waves: Wave-tracing using beta-splines and reflective and refractive texture mapping. ACM Trans. Graph. 6, 3, 191–214. Google ScholarDigital Library
    45. Wang, H., Mucha, P., and Turk, G. 2005. Water drops on surfaces. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 921–929. Google ScholarDigital Library
    46. Whitaker, R. T. 1998. A level-set approach to 3d reconstruction from range data. Int. J. Comput. Vision 29, 3, 203–231. Google ScholarDigital Library
    47. Wiebe, M., and Houston, B. 2004. The tar monster: Creating a character with fluid simulation. In SIGGRAPH 2004 Sketches & Applications, ACM Press. Google ScholarDigital Library
    48. Zhu, Y., and Bridson, R. 2005. Animating sand as a fluid. ACM Trans. Graph. (SIGGRAPH Proc.) 24, 3, 965–971. Google ScholarDigital Library

ACM Digital Library Publication: