“Efficient simulation of inextensible cloth” by Goldenthal, Harmon, Fattal, Bercovier and Grinspun

  • ©Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, and Eitan Grinspun




    Efficient simulation of inextensible cloth



    Many textiles do not noticeably stretch under their own weight. Unfortunately, for better performance many cloth solvers disregard this fact. We propose a method to obtain very low strain along the warp and weft direction using Constrained Lagrangian Mechanics and a novel fast projection method. The resulting algorithm acts as a velocity filter that easily integrates into existing simulation code.


    1. Ascher, U. M., Ruuth, S. J., and Spiteri, R. J. 1997. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations. Applied Numerical Mathematics: Transactions of IMACS 25, 2–3, 151–167. Google ScholarDigital Library
    2. Baraff, D., and Witkin, A. 1998. Large steps in cloth simulation. In Proceedings of SIGGRAPH 98, ACM Press / ACM SIGGRAPH, New York, NY, USA, 43–54. Google ScholarDigital Library
    3. Barth, E., Kuczera, K., Leimkuhler, B., and Skeel, R. 1994. Algorithms for Constrained Molecular Dynamics. March.Google Scholar
    4. Bercovier, M., and Pat, T. 1984. A C
    0 finite element method for the analysis of inextensibile pipe lines. Computers and Structures 18, 6, 1019–1023.Google ScholarCross Ref
    5. Bergou, M., Wardetzky, M., Harmon, D., Zorin, D., and Grinspun, E. 2006. A quadratic bending model for inextensible surfaces. In Fourth Eurographics Symposium on Geometry Processing, 227–230. Google ScholarDigital Library
    6. Boxerman, E. 2003. Speeding up cloth simulation. Master’s thesis, University of British Columbia.Google Scholar
    7. Breen, D. E., House, D. H., and Wozny, M. J. 1994. Predicting the drape of woven cloth using interacting particles. In Proceedings of ACM SIGGRAPH 1994, ACM Press/ACM SIGGRAPH, New York, NY, USA, 365–372. Google ScholarDigital Library
    8. Bridson, R., Fedkiw, R. P., and Anderson, J. 2002. Robust treatment of collisions, contact, and friction for cloth animation. ACM Transactions on Graphics 21, 3 (July), 594–603. Google ScholarDigital Library
    9. Bridson, R., Marino, S., and Fedkiw, R. 2003. Simulation of clothing with folds and wrinkles. In Symposium on Computer animation, 28–36. Google ScholarDigital Library
    10. Choi, K.-J., and Ko, H.-S. 2002. Stable but responsive cloth. ACM Transactions on Graphics” 21, 3, 604–611. Google ScholarDigital Library
    11. Choi, K.-J., and Ko, H.-S. 2005. Research problems in clothing simulation. Computer-Aided Design 37, 6, 585–592. Google ScholarDigital Library
    12. Desbrun, M., Schröder, P., and Barr, A. 1999. Interactive animation of structured deformable objects. In Graphics Interface ’99, 1–8. Google ScholarDigital Library
    13. Eberhardt, B., Weber, A., and Strasser, W. 1996. A fast, flexible, particle-system model for cloth draping. IEEE Comput. Graph. Appl. 16, 5, 52–59. Google ScholarDigital Library
    14. Eberhardt, B., Etzmuss, O., and Hauth, M. 2000. Implicit-explicit schemes for fast animation with particle systems 137–154.Google Scholar
    15. Fuhrmann, A., Gross, C., and Luckas, V. 2003. Interactive animation of cloth including self collision detection. In WSCG ’03, 141–148.Google Scholar
    16. Griffiths, P., and Kulke, T. 2002. Clothing movement—visual sensory evaluation and its correlation to fabric properties. Journal of sensory studies 17, 3, 229–255.Google ScholarCross Ref
    17. Hairer, E., Lubich, C., and Wanner, G. 2002. Geometric Numerical Integration. No. 31 in Springer Series in Computational Mathematics. Springer-Verlag.Google Scholar
    18. Hauth, M., Etzmuss, O., and Strasser, W. 2003. Analysis of numerical methods for the simulation of deformable models. The Visual Computer 19, 7–8, 581–600.Google ScholarDigital Library
    19. Hong, M., Choi, M.-H., Jung, S., Welch, S., and Trapp, J. 2005. Effective constrained dynamic simulation using implicit constraint enforcement. In International Conference on Robotics and Automation, 4520–4525.Google Scholar
    20. House, D. H., and Breen, D. E., Eds. 2000. Cloth modeling and animation. A. K. Peters, Ltd., Natick, MA, USA. Google ScholarDigital Library
    21. House, D. H., DeVaul, R. W., and Breen, D. E. 1996. Towards simulating cloth dynamics using interacting particles. International Journal of Clothing Science and Technology 8, 3, 75–94.Google ScholarCross Ref
    22. Marsden, J. 1999. Introduction to Mechanics and Symmetry. Springer.Google Scholar
    23. Meyer, M., Debunne, G., Desbrun, M., and Barr, A. H. 2001. Interactive animation of cloth-like objects in virtual reality. The Journal of Visualization and Computer Animation 12, 1 (Feb.), 1–12.Google ScholarCross Ref
    24. Müller, M., Heidelberger, B., Hennix, M., and Ratcliff, J. 2006. Position based dynamics. In Proceedings of Virtual Reality Interactions and Physical Simulation (VRIPHYS), C. Mendoza and I. Navazo, Eds., 71–80.Google Scholar
    25. Provot, X. 1995. Deformation constraints in a mass-spring model to describe rigid cloth behavior. In Graphics Interface, 147–154.Google Scholar
    26. Schenk, O., and Gärtner, K. 2006. On fast factorization pivoting methods for sparse symmetric indefinite systems. Elec. Trans. Numer. Anal 23, 158–179.Google Scholar
    27. Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Computer Graphics (Proceedings of ACM SIGGRAPH 87), ACM Press, New York, NY, USA, 205–214. Google ScholarDigital Library
    28. Tsiknis, K. D. 2006. Better cloth through unbiased strain limiting and physics-aware subdivision. Master’s thesis, The University of British Columbia.Google Scholar
    29. Volino, P., and Magnenat-Thalmann, N. Comparing efficiency of integration methods for cloth simulation. Computer Graphics International. Google ScholarDigital Library
    30. Witkin, A., Gleicher, M., and Welch, W. 1990. Interactive dynamics. Computer Graphics (Proceedings of ACM SIGGRAPH 90) 24, 2, 11–21. Google ScholarDigital Library
    31. Zienkiewicz, O. C., and Taylor, R. C. 1989. The finite element method. McGraw Hill. 2.Google Scholar

ACM Digital Library Publication:

Overview Page: