“Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold” by Pan, Tewari, Leimkühler, Liu, Meka, et al. …

  • ©Xingang Pan, Ayush Tewari, Thomas Leimkühler, Lingjie Liu, Abhimitra Meka, and Christian Theobalt




    Drag Your GAN: Interactive Point-based Manipulation on the Generative Image Manifold

Session/Category Title:   Neural Image Generation and Editing




    Synthesizing visual content that meets users’ needs often requires flexible and precise controllability of the pose, shape, expression, and layout of the generated objects. Existing approaches gain controllability of generative adversarial networks (GANs) via manually annotated training data or a prior 3D model, which often lack flexibility, precision, and generality. In this work, we study a powerful yet much less explored way of controlling GANs, that is, to “drag” any points of the image to precisely reach target points in a user-interactive manner, as shown in Fig.1. To achieve this, we propose DragGAN, which consists of two main components: 1) a feature-based motion supervision that drives the handle point to move towards the target position, and 2) a new point tracking approach that leverages the discriminative generator features to keep localizing the position of the handle points. Through DragGAN, anyone can deform an image with precise control over where pixels go, thus manipulating the pose, shape, expression, and layout of diverse categories such as animals, cars, humans, landscapes, etc. As these manipulations are performed on the learned generative image manifold of a GAN, they tend to produce realistic outputs even for challenging scenarios such as hallucinating occluded content and deforming shapes that consistently follow the object’s rigidity. Both qualitative and quantitative comparisons demonstrate the advantage of DragGAN over prior approaches in the tasks of image manipulation and point tracking. We also showcase the manipulation of real images through GAN inversion.


    1. Rameen Abdal, Yipeng Qin, and Peter Wonka. 2019. Image2stylegan: How to embed images into the stylegan latent space?. In ICCV.
    2. Rameen Abdal, Peihao Zhu, Niloy J Mitra, and Peter Wonka. 2021. Styleflow: Attribute-conditioned exploration of stylegan-generated images using conditional continuous normalizing flows. ACM Transactions on Graphics (ToG) 40, 3 (2021), 1–21.
    3. Thomas Brox and Jitendra Malik. 2010. Large displacement optical flow: descriptor matching in variational motion estimation. IEEE transactions on pattern analysis and machine intelligence 33, 3 (2010), 500–513.
    4. Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero Karras, and Gordon Wetzstein. 2022. Efficient Geometry-aware 3D Generative Adversarial Networks. In CVPR.
    5. Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein. 2021. pi-gan: Periodic implicit generative adversarial networks for 3d-aware image synthesis. In CVPR.
    6. Anpei Chen, Ruiyang Liu, Ling Xie, Zhang Chen, Hao Su, and Jingyi Yu. 2022. Sofgan: A portrait image generator with dynamic styling. ACM Transactions on Graphics (TOG) 41, 1 (2022), 1–26.
    7. Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. 2020. StarGAN v2: Diverse Image Synthesis for Multiple Domains. In CVPR.
    8. Edo Collins, Raja Bala, Bob Price, and Sabine Susstrunk. 2020. Editing in style: Uncovering the local semantics of gans. In CVPR. 5771–5780.
    9. Antonia Creswell, Tom White, Vincent Dumoulin, Kai Arulkumaran, Biswa Sengupta, and Anil A Bharath. 2018. Generative adversarial networks: An overview. IEEE signal processing magazine 35, 1 (2018), 53–65.
    10. Yu Deng, Jiaolong Yang, Dong Chen, Fang Wen, and Xin Tong. 2020. Disentangled and Controllable Face Image Generation via 3D Imitative-Contrastive Learning. In CVPR.
    11. Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas, Vladimir Golkov, Patrick Van Der Smagt, Daniel Cremers, and Thomas Brox. 2015. Flownet: Learning optical flow with convolutional networks. In ICCV.
    12. Yuki Endo. 2022. User-Controllable Latent Transformer for StyleGAN Image Layout Editing. Computer Graphics Forum 41, 7 (2022), 395–406. https://doi.org/10.1111/cgf.14686
    13. Dave Epstein, Taesung Park, Richard Zhang, Eli Shechtman, and Alexei A Efros. 2022. Blobgan: Spatially disentangled scene representations. In ECCV. 616–635.
    14. Jianglin Fu, Shikai Li, Yuming Jiang, Kwan-Yee Lin, Chen Qian, Chen-Change Loy, Wayne Wu, and Ziwei Liu. 2022. StyleGAN-Human: A Data-Centric Odyssey of Human Generation. In ECCV.
    15. Partha Ghosh, Pravir Singh Gupta, Roy Uziel, Anurag Ranjan, Michael J Black, and Timo Bolkart. 2020. GIF: Generative interpretable faces. In International Conference on 3D Vision (3DV).
    16. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial nets. In NeurIPS.
    17. Jiatao Gu, Lingjie Liu, Peng Wang, and Christian Theobalt. 2022. StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis. In ICLR.
    18. Erik Härkönen, Aaron Hertzmann, Jaakko Lehtinen, and Sylvain Paris. 2020. GANSpace: Discovering Interpretable GAN Controls. arXiv preprint arXiv:2004.02546 (2020).
    19. Adam W. Harley, Zhaoyuan Fang, and Katerina Fragkiadaki. 2022. Particle Video Revisited: Tracking Through Occlusions Using Point Trajectories. In ECCV.
    20. Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic models. In NeurIPS.
    21. Takeo Igarashi, Tomer Moscovich, and John F Hughes. 2005. As-rigid-as-possible shape manipulation. ACM transactions on Graphics (TOG) 24, 3 (2005), 1134–1141.
    22. Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper, Alexey Dosovitskiy, and Thomas Brox. 2017. Flownet 2.0: Evolution of optical flow estimation with deep networks. In CVPR.
    23. Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-image translation with conditional adversarial networks. In CVPR.
    24. Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. 2021. Alias-Free Generative Adversarial Networks. In NeurIPS.
    25. Tero Karras, Samuli Laine, and Timo Aila. 2019. A style-based generator architecture for generative adversarial networks. In CVPR. 4401–4410.
    26. Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. 2020. Analyzing and improving the image quality of stylegan. In CVPR. 8110–8119.
    27. Davis E. King. 2009. Dlib-ml: A Machine Learning Toolkit. Journal of Machine Learning Research 10 (2009), 1755–1758.
    28. Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).
    29. Thomas Leimkühler and George Drettakis. 2021. FreeStyleGAN: Free-view Editable Portrait Rendering with the Camera Manifold. 40, 6 (2021). https://doi.org/10.1145/3478513.3480538
    30. Huan Ling, Karsten Kreis, Daiqing Li, Seung Wook Kim, Antonio Torralba, and Sanja Fidler. 2021. Editgan: High-precision semantic image editing. In NeurIPS.
    31. Ron Mokady, Omer Tov, Michal Yarom, Oran Lang, Inbar Mosseri, Tali Dekel, Daniel Cohen-Or, and Michal Irani. 2022. Self-distilled stylegan: Towards generation from internet photos. In ACM SIGGRAPH 2022 Conference Proceedings. 1–9.
    32. Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. 2019. Semantic image synthesis with spatially-adaptive normalization. In CVPR.
    33. Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Automatic differentiation in PyTorch. (2017).
    34. Or Patashnik, Zongze Wu, Eli Shechtman, Daniel Cohen-Or, and Dani Lischinski. 2021. Styleclip: Text-driven manipulation of stylegan imagery. In ICCV.
    35. Justin N. M. Pinkney. 2020. Awesome pretrained StyleGAN2. https://github.com/justinpinkney/awesome-pretrained-stylegan2.
    36. Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. 2022. Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125 (2022).
    37. Daniel Roich, Ron Mokady, Amit H Bermano, and Daniel Cohen-Or. 2022. Pivotal tuning for latent-based editing of real images. ACM Transactions on Graphics (TOG) 42, 1 (2022), 1–13.
    38. Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. 2021. High-Resolution Image Synthesis with Latent Diffusion Models. arxiv:2112.10752 [cs.CV]
    39. Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, 2022. Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding. arXiv preprint arXiv:2205.11487 (2022).
    40. Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas Geiger. 2020. GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. In NeurIPS.
    41. Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. 2020. Interpreting the latent space of gans for semantic face editing. In CVPR.
    42. Yujun Shen and Bolei Zhou. 2020. Closed-Form Factorization of Latent Semantics in GANs. arXiv preprint arXiv:2007.06600 (2020).
    43. Ivan Skorokhodov, Grigorii Sotnikov, and Mohamed Elhoseiny. 2021. Aligning Latent and Image Spaces to Connect the Unconnectable. arXiv preprint arXiv:2104.06954 (2021).
    44. Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. 2015. Deep unsupervised learning using nonequilibrium thermodynamics. In International Conference on Machine Learning. PMLR, 2256–2265.
    45. Jiaming Song, Chenlin Meng, and Stefano Ermon. 2020. Denoising Diffusion Implicit Models. In ICLR.
    46. Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. 2021. Score-Based Generative Modeling through Stochastic Differential Equations. In International Conference on Learning Representations.
    47. Narayanan Sundaram, Thomas Brox, and Kurt Keutzer. 2010. Dense point trajectories by gpu-accelerated large displacement optical flow. In ECCV.
    48. Ryohei Suzuki, Masanori Koyama, Takeru Miyato, Taizan Yonetsuji, and Huachun Zhu. 2018. Spatially controllable image synthesis with internal representation collaging. arXiv preprint arXiv:1811.10153 (2018).
    49. Zachary Teed and Jia Deng. 2020. Raft: Recurrent all-pairs field transforms for optical flow. In ECCV.
    50. Ayush Tewari, Mohamed Elgharib, Gaurav Bharaj, Florian Bernard, Hans-Peter Seidel, Patrick Pérez, Michael Zollhofer, and Christian Theobalt. 2020. StyleRig: Rigging StyleGAN for 3D Control over Portrait Images. In CVPR.
    51. Nontawat Tritrong, Pitchaporn Rewatbowornwong, and Supasorn Suwajanakorn. 2021. Repurposing gans for one-shot semantic part segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 4475–4485.
    52. Jianyuan Wang, Ceyuan Yang, Yinghao Xu, Yujun Shen, Hongdong Li, and Bolei Zhou. 2022b. Improving gan equilibrium by raising spatial awareness. In CVPR. 11285–11293.
    53. Sheng-Yu Wang, David Bau, and Jun-Yan Zhu. 2022a. Rewriting Geometric Rules of a GAN. ACM Transactions on Graphics (TOG) (2022).
    54. Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao. 2015. Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365 (2015).
    55. Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. 2018. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In CVPR.
    56. Yuxuan Zhang, Huan Ling, Jun Gao, Kangxue Yin, Jean-Francois Lafleche, Adela Barriuso, Antonio Torralba, and Sanja Fidler. 2021. DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort. In CVPR.
    57. Jiapeng Zhu, Ceyuan Yang, Yujun Shen, Zifan Shi, Deli Zhao, and Qifeng Chen. 2023. LinkGAN: Linking GAN Latents to Pixels for Controllable Image Synthesis. arXiv preprint arXiv:2301.04604 (2023).
    58. Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A Efros. 2016. Generative visual manipulation on the natural image manifold. In ECCV.

ACM Digital Library Publication:

Overview Page: