“Double bubbles sans toil and trouble: discrete circulation-preserving vortex sheets for soap films and foams” by Da, Batty, Wojtan and Grinspun

  • ©Fang Da, Christopher Batty, Chris Wojtan, and Eitan Grinspun




    Double bubbles sans toil and trouble: discrete circulation-preserving vortex sheets for soap films and foams



    Simulating the delightful dynamics of soap films, bubbles, and foams has traditionally required the use of a fully three-dimensional many-phase Navier-Stokes solver, even though their visual appearance is completely dominated by the thin liquid surface. We depart from earlier work on soap bubbles and foams by noting that their dynamics are naturally described by a Lagrangian vortex sheet model in which circulation is the primary variable. This leads us to derive a novel circulation-preserving surface-only discretization of foam dynamics driven by surface tension on a non-manifold triangle mesh. We represent the surface using a mesh-based multimaterial surface tracker which supports complex bubble topology changes, and evolve the surface according to the ambient air flow induced by a scalar circulation field stored on the mesh. Surface tension forces give rise to a simple update rule for circulation, even at non-manifold Plateau borders, based on a discrete measure of signed scalar mean curvature. We further incorporate vertex constraints to enable the interaction of soap films with wires. The result is a method that is at once simple, robust, and efficient, yet able to capture an array of soap films behaviors including foam rearrangement, catenoid collapse, blowing bubbles, and double bubbles being pulled apart.


    1. Agishtein, M. E., and Migdal, A. A. 1989. Dynamics of vortex surfaces in three dimensions: Theory and simulations. Physica D: Nonlinear Phenomena 40, 1, 91–118.Google ScholarCross Ref
    2. Angelidis, A., and Neyret, F. 2005. Simulation of smoke based on vortex filament primitives. In Symposium on Computer Animation, 87–96. Google ScholarDigital Library
    3. Angelidis, A., Neyret, F., Singh, K., and Nowrouzezahrai, D. 2006. A controllable, fast and stable basis for vortex based smoke simulation. In Symposium on Computer Animation, 25–32. Google ScholarDigital Library
    4. Baker, G. R., Mirron, D. I., and Orszag, S. A. 1982. Generalized vortex methods for free-surface flow problems. J. Fluid Mech. 123, 477–501.Google ScholarCross Ref
    5. Barnat, A., and Pollard, N. S. 2012. Smoke sheets for graph-structured vortex filaments. In Symposium on Computer Animation, 77–86. Google ScholarDigital Library
    6. Batty, C., Uribe, A., Audoly, B., and Grinspun, E. 2012. Discrete viscous sheets. ACM Trans. Graph. (SIGGRAPH) 31, 4, 113. Google ScholarDigital Library
    7. Bojsen-Hansen, M., and Wojtan, C. 2013. Liquid surface tracking with error compensation. ACM Trans. Graph. (SIGGRAPH) 32, 4, 79:1–79:10. Google ScholarDigital Library
    8. Brakke, K. 1992. The surface evolver. Experimental Mathematics 1, 2, 141–165.Google ScholarCross Ref
    9. Brochu, T., and Bridson, R. 2009. Robust topological operations for dynamic explicit surfaces. SIAM J. Sci. Comput. 31, 4, 2472–2493. Google ScholarDigital Library
    10. Brochu, T., Keeler, T., and Bridson, R. 2012. Linear-time smoke animation with vortex sheets. In Symposium on Computer Animation, 87–95. Google ScholarDigital Library
    11. Brochu, T. 2006. Fluid animation with explicit surface meshes and boundary-only dynamics. Master’s thesis, Citeseer.Google Scholar
    12. Busaryev, O., Dey, T. K., Wang, H., and Ren, Z. 2012. Animating bubble interactions in a liquid foam. ACM Trans. Graph. (SIGGRAPH) 31, 4, 63. Google ScholarDigital Library
    13. Clausen, P., Wicke, M., Shewchuk, J. R., and O’Brien, J. F. 2013. Simulating liquids and solid-liquid interactions with Lagrangian meshes. ACM Trans. Graph. 32, 2, 17. Google ScholarDigital Library
    14. Cohen-Steiner, D., and Morvan, J.-M. 2003. Restricted delaunay triangulations and normal cycle. 237–246.Google Scholar
    15. Cottet, G.-H., and Koumoutsakos, P. 2000. Vortex Methods: Theory and Practice. Cambridge University Press.Google ScholarCross Ref
    16. Da, F., Batty, C., and Grinspun, E. 2014. Multimaterial mesh-based surface tracking. ACM Trans. Graph. (SIGGRAPH) 33, 4, 112:1–112:11. Google ScholarDigital Library
    17. Durikovic, R. 2001. Animation of soap bubble dynamics, cluster formation and collision. Computer Graphics Forum (Eurographics) 20, 3, 67–76.Google ScholarCross Ref
    18. Elcott, S., Tong, Y., Kanso, E., Schröder, P., and Desbrun, M. 2007. Stable, circulation-preserving, simplicial fluids. ACM Trans. Graph. 26, 1, 4. Google ScholarDigital Library
    19. Glassner, A. 2000. Soap bubbles: Part 1. IEEE Computer Graphics and Applications 20, 5, 76–84. Google ScholarDigital Library
    20. Glassner, A. 2000. Soap bubbles: Part 2. IEEE Computer Graphics and Applications 20, 6, 99–109. Google ScholarDigital Library
    21. Golas, A., Narain, R., Sewall, J., Krajcevski, P., Dubey, P., and Lin, M. C. 2012. Large-scale fluid simulation using velocity-vorticity domain decomposition. ACM Trans. Graph. (SIGGRAPH Asia) 31, 6, 148. Google ScholarDigital Library
    22. Greenwood, S. T., and House, D. H. 2004. Better with bubbles. In Symposium on Computer Animation.Google Scholar
    23. Hong, J.-M., and Kim, C.-H. 2003. Animation of bubbles in liquid. Computer Graphics Forum 22, 3, 253–262.Google ScholarCross Ref
    24. Hong, J.-M., and Kim, C.-H. 2005. Discontinuous fluids. ACM Trans. Graph. (SIGGRAPH) 24, 3 (July), 915–920. Google ScholarDigital Library
    25. Hong, J.-M., Lee, H.-Y., Yoon, J.-C., and Kim, C.-H. 2008. Bubbles Alive. ACM Trans. Graph. (SIGGRAPH) 27, 3, 48. Google ScholarDigital Library
    26. Kang, M., Fedkiw, R., and Liu, X.-D. 2000. A boundary condition capturing method for multiphase incompressible flow. SIAM J. Sci. Comput. 15, 3, 323–360. Google ScholarDigital Library
    27. Keeler, T., and Bridson, R. 2014. Ocean waves animation using boundary integral equations and explicit mesh tracking. In Symposium on Computer Animation. Google ScholarDigital Library
    28. Kim, B., Liu, Y., Llamas, I., Jiao, X., and Rossignac, J. 2007. Simulation of bubbles in foam with the volume control method. ACM Trans. Graph. (SIGGRAPH) 26, 3, 98. Google ScholarDigital Library
    29. Kim, D., Song, O.-Y., and Ko, H.-S. 2009. Stretching and wiggling liquids. ACM Trans. Graph. (SIGGRAPH Asia) 28, 5, 120. Google ScholarDigital Library
    30. Kim, D., Song, O.-Y., and Ko, H.-S. 2010. A practical simulation of dispersed bubble flow. ACM Trans. Graph. (SIGGRAPH) 29, 4, 70. Google ScholarDigital Library
    31. Kuck, H., Vogelsang, C., and Greiner, G. 2002. Simulation and rendering of liquid foams. In Graphics Interface, 81–88.Google Scholar
    32. Losasso, F., Shinar, T., Selle, A., and Fedkiw, R. 2006. Multiple interacting liquids. ACM Trans. Graph. (SIGGRAPH) 25, 3, 812–819. Google ScholarDigital Library
    33. Meyer, M., Desbrun, M., Schröder, P., and Barr, A. 2002. Discrete differential-geometry operators for triangulated 2-manifolds. In VisMath, Springer-Verlag, Berlin, Germany, 35–54.Google Scholar
    34. Mihalef, V., Unlusu, B., Metaxas, D., Sussman, M., and Hussaini, M. Y. 2006. Physics based boiling simulation. In Symposium on Computer Animation, 317–324. Google ScholarDigital Library
    35. Misztal, M., Erleben, K., Bargteil, A. W., Christensen, B. B., Baerentzen, A., and Bridson, R. 2012. Multiphase flow of immiscible fluids on unstructured moving meshes. In Symposium on Computer Animation, Eurographics Association, Lausanne, Switzerland, 97–106. Google ScholarDigital Library
    36. Mullen, P., Crane, K., Pavlov, D., Tong, Y., and Desbrun, M. 2009. Energy-preserving integrators for fluid animation. ACM Trans. Graph. (SIGGRAPH) 28, 3, 38. Google ScholarDigital Library
    37. Pan, H., Choi, Y.-K., Liu, Y., Hu, W., Du, Q., Polthier, K., Zhang, C., and Wang, W. 2012. Robust modeling of constant mean curvature surfaces. ACM Trans. Graph. (SIGGRAPH) 31, 4, 85. Google ScholarDigital Library
    38. Park, S. I., and Kim, M. J. 2005. Vortex fluid for gaseous phenomena. In Symposium on Computer Animation, 261–270. Google ScholarDigital Library
    39. Patkar, S., Aanjaneya, M., Karpman, D., and Fedkiw, R. 2013. A Hybrid Lagrangian-Eulerian Formulation for Bubble Generation and Dynamics. In Symposium on Computer Animation, 105–114. Google ScholarDigital Library
    40. Pfaff, T., Thuerey, N., Selle, A., and Gross, M. 2009. Synthetic turbulence using artificial boundary layers. ACM Trans. Graph. (SIGGRAPH Asia) 28, 5, 121. Google ScholarDigital Library
    41. Pfaff, T., Thuerey, N., and Gross, M. 2012. Lagrangian vortex sheets for animating fluids. ACM Trans. Graph. (SIGGRAPH) 31, 4, 112:1–112:8. Google ScholarDigital Library
    42. Pinkall, U., and Polthier, K. 1993. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2, 1, 15–36.Google ScholarCross Ref
    43. Pozrikidis, C. 2000. Theoretical and computational aspects of the self-induced motion of three-dimensional vortex sheets. J. Fluid Mech. 425, 335–366.Google ScholarCross Ref
    44. Saye, R., and Sethian, J. 2013. Multiscale Modeling of Membrane Rearrangement, Drainage, and Rupture in Evolving Foams. Science 340, 6133, 720–724.Google Scholar
    45. Selle, A., Rasmussen, N., and Fedkiw, R. 2005. A vortex particle method for smoke, water and explosions. ACM Trans. Graph. (SIGGRAPH) 24, 3, 910–914. Google ScholarDigital Library
    46. Stock, M. J., Dahm, W. J. A., and Tryggvason, G. 2008. Impact of a vortex ring on a density interface using a regularized inviscid vortex sheetmethod. J. Comp. Phys. 227, 21, 9021–9043. Google ScholarDigital Library
    47. Stock, M. 2006. A regularized inviscid vortex sheet method for three-dimensional flows with density interfaces. PhD thesis.Google Scholar
    48. Tryggvason, G. 1988. Numerical simulations of the Rayleigh-Taylor instability. J. Comp. Phys. 75, 2, 253–282. Google ScholarDigital Library
    49. Vines, M., Houston, B., Lang, J., and Lee, W.-S. 2014. Vortical inviscid flows with two-way solid-fluid coupling. IEEE TVCG 20, 2, 303–315. Google ScholarDigital Library
    50. Weaire, D., and Hutzler, S. 2001. Physics of Foams. Oxford University Press, New York.Google Scholar
    51. Weaire, D. 2013. A fresh start for foam physics. Science 340, 6133, 693–694.Google Scholar
    52. Weissmann, S., and Pinkall, U. 2009. Real-time interactive simulation of smoke using discrete integrable vortex filament. In VRIPHYS, 1–10.Google Scholar
    53. Weissmann, S., and Pinkall, U. 2010. Filament-based smoke with vortex shedding and variational reconnection. ACM Trans. Graph. (SIGGRAPH) 29, 4, 115:1–115:12. Google ScholarDigital Library
    54. Zhang, X., and Bridson, R. 2014. A PPPM fast summation method for fluids and beyond. ACM Trans. Graph. (SIGGRAPH Asia) 33, 6, 206. Google ScholarDigital Library
    55. Zhang, Y., Wang, H., Wang, S., Tong, Y., and Zhou, K. 2012. A deformable surface model for real-time water drop animation. IEEE TVCG 18, 8, 1281–1289. Google ScholarDigital Library
    56. Zheng, W., Yong, J.-H., and Paul, J.-C. 2006. Simulation of bubbles. In Symposium on Computer Animation, Eurographics Association, Vienna, 325–333. Google ScholarDigital Library
    57. Zhu, B., Quigley, E., Cong, M., Solomon, J., and Fedkiw, R. 2014. Codimensional surface tension flow on simplicial complexes. ACM Trans. Graph. (SIGGRAPH) 33, 4, 111. Google ScholarDigital Library

ACM Digital Library Publication:

Overview Page: